1 |
RESOLUTION OF PROXIMAL OXIDATIVE BASE DAMAGE AND 3′-PHOSPHATE TERMINI FOR NONHOMOLOGOUS END JOINING OF FREE RADICAL-MEDIATED DNA DOUBLE-STRAND BREAKSChalasani, Sri Lakshmi 01 January 2018 (has links)
Clustered damage to DNA is a signature mark of radiation-induced damage, which involves damage to the nucleobases and/or DNA backbone. Double-strand breaks created by damaging agents are detrimental to cell survival leading to chromosomal translocations. Normal cells employ Non-homologous end-joining because of its faster kinetics, to suppress chromosomal translocations. However, the presence of complex DNA ends constitutes a significant challenge to NHEJ. Location of Thymine glycol (Tg) at DSB ends was a potential hindrance to end joining. The substrate with Tg at the third position (Tg3) from the DSB joined better than when present at the fifth position (Tg5). However, hNTH1 assay showed Tg5 to be a better substrate than Tg3 for BER, potentially explaining the increased Tg removal and decreased end joining of Tg5 in extracts. Nonetheless, there appeared to be no preference in the susceptibility of 5’-Tg substrates with Tg at the second and third positions from DSB ends.
Polynucleotide kinase phosphatase is crucial in restoring the 3′ hydroxyl, and 5′ phosphate ends at strand breaks. No other enzyme is known to possess PNKP’s activity in mammalian cells at DSBs. Experiments done with PNKP knockout cells have shown some activity similar to PNKP, which appeared to be a part of NHEJ and was not pharmacologically inhibited by PNKP inhibitor. Additionally, core NHEJ factors XRCC4 and XLF influenced the activities of PNKP.
Overall, these experiments suggest that Tg repair is dependent on the position from DSB and an alternative enzyme processes 3′- PO, and 5′-OH ends.
|
2 |
Cellular and Viral Factors Governing DNA-PK Activation During Adenovirus InfectionChen, Christopher L. 18 April 2022 (has links)
No description available.
|
3 |
Generation of an Acute Myeloid Leukemia Mouse Model by Loss of DNA-pk and DEKShephard, Miranda January 2022 (has links)
No description available.
|
4 |
The role of DNA-dependent protein kinase in tumor metastasis / Le rôle de la protéine kinase dépendante de l’ADN (DNA-PK) dans le processus métastatiqueKotula, Ewa 28 May 2014 (has links)
La protéine kinase dépendante de l’ADN (DNA-PK) est une sérine-thréonine kinase qui est un élément essentiel dans la voie de réparation de l’ADN endommagé par recombinaison non-homologue (non-homologous end-joining; NHEJ). DNA-PK est également impliquée dans de nombreux processus cellulaires autre que la réparation de l'ADN. Plusieurs travaux ont montré que les protéines impliquées dans la réparation des dommages de l'ADN tels que BRCA-1, MRN-11, PARP-1 et également de DNA-PK jouent un rôle important dans la métastase du cancer. Dans ce travail, nous nous sommes concentrées sur le rôle de DNA-PK dans les métastases du mélanome. Dans un premier temps, en utilisant les molécules Dbait 32Hc comme un moyen d'activer DNA-PK dans le noyau et le cytoplasme, nous avons identifié plusieurs nouvelles cibles cytoplasmiques de DNA-PK, dont la vimentine. Nous avons montré que DNA-PK phosphoryle la vimentine sur Ser459 et que cette forme phosphorylée est la plupart du temps située au niveau des protrusion cellulaires des cellules migratrices. Nous avons ensuite démontré que la vimentine-Ser459-P induite par le traitement de Dbait32Hc participe à l'inhibition de l'adhésion et la migration cellulaire. Ainsi, cette approche a conduit à l'identification de nouvelles cibles cytoplasmiques de DNA-PK et a révélé un lien entre la signalisation des dommages de l'ADN et le cytosquelette. Ensuite, nous avons montré que DNA-PK joue un rôle important dans la migration et invasion cellules en régulant la sécrétion des facteurs associés à la métastase. Nous avons montré que l'absence ou l’inhibition de DNA-PK conduit à une régulation négative des facteurs pro-métastatique sécrétés et à la régulation positive de facteurs anti-métastatiques sécrétés tels que les inhibiteurs des métalloprotéinases matricielles. Nous avons confirmé le rôle de DNA-PK in vivo dans l'implantation de la tumeur primaire et dans la formation des métastases. Ainsi, nos études ont évalué le rôle de DNA-PK sur le contrôle du microenvironnement de la tumeur par le contrôle de la sécrétion de facteurs importants pour la métastase. En résumé, nos résultats mettent en évidence l'importance de la DNA-PK comme cible de traitement anti-métastatique. / The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase, which is a critical component of the DNA-damage repair pathways through non-homologous end-joining (NHEJ). Besides DNA repair, it is also involved in numerous cellular pathways. Emerging results show that proteins involved in DNA damage repair such as BRCA-1, MRN-11, PARP-1 and also DNA-PK could play a role in cancer metastasis. In the current study, we demonstrated the role of DNA-PK in melanoma metastasis. Firstly using Dbait 32Hc molecules as a tool for specifically activating DNA-PK in a nucleus and cytoplasm, we identified several new cytoplasmic targets of DNA-PK including vimentin. We established that DNA-PK phosphorylates vimentin on Ser459 and that this phosphorylation was mostly located at cell protrusions of melanoma migratory cells. Following this, we confirmed that vimentin-Ser459-P induced by Dbait 32Hc treatment participates to the inhibition of cell adhesion and migration. Thus, this approach led to the identification of downstream cytoplasmic targets of DNA-PK and revealed a connection between DNA damage signaling and the cytoskeleton. Secondly, we show that DNA-PK plays an important role in cell migration and melanoma cell invasion through the regulation of secretion of metastasis-associated factors. Absence or inhibition of DNA-PK leads to down-regulation of pro-metastatic secreted factors and up-regulation of anti-metastatic secreted factors such as inhibitors of matrix metalloproteinases. We confirmed in vivo, that DNA-PK is required for efficient primary tumor implantation and metastases formation. Thus, our studies demonstrate for the first time that DNA-PK acts on tumor microenvironment by controlling secretion of important factors for cell migration and invasion. In summary, our findings highlight the importance of DNA-PK as a target of anti-metastatic treatment.
|
5 |
DNA double-strand break formation and signalling in response to transcription-blocking topoisomerase I complexes / Formation et signalisation des cassures double-brin de l'ADN lors d'un blocage de la transcriptionCristini, Agnese 13 November 2015 (has links)
La topoisomérase I (Top1) élimine les surenroulements de l'ADN générés lors de la transcription en produisant transitoirement des complexes de clivage Top1-ADN (Top1cc). Ces Top1cc transitoires peuvent être stabilisés par les camptothécines, dont sont dérivés des agents anticancéreux, et par les fréquentes altérations de l'ADN. Bien que les Top1cc stabilisés soient des lésions qui bloquent efficacement la transcription, la compréhension des processus moléculaires qui résultent du blocage des complexes transcriptionnels par les Top1cc est encore limitée. Des travaux précédents ont montré que les Top1cc stabilisés produisent des cassures double-brin (DSBs) de l'ADN dépendantes de la transcription qui activent ATM. Dans ce projet, nous avons utilisé des cellules quiescentes traitées avec la camptothécine pour induire des Top1cc bloquant la transcription et nous avons étudié les mécanismes de la production et de la signalisation des DSBs. Nous montrons que les DSBs sont produites préférentiellement dans les régions sub-télomériques lors de la réparation des Top1cc bloquant la transcription par les cassures simple-brin de l'ADN générées après la protéolyse de la Top1 et avant l'action de Tdp1. L'analyse de la signalisation de ces DSBs révèle une nouvelle fonction de DNA-PK dans la promotion de l'ubiquitinylation conduisant (i) à l'activité complète d'ATM aux sites des DSBs en favorisant l'ubiquitination d'H2AX et H2A, et (ii) à l'augmentation de la réparation des Top1cc en favorisant la protéolyse de la Top1. Enfin, nous montrons que les DSBs co-transcriptionnelles induisent la mort des cellules quiescentes. L'ensemble de ces résultats apportent un nouvel aperçu des réponses cellulaires aux camptothécines, et suggèrent que les DSBs qui résultent des Top1cc bloquant la transcription puissent contribuer à la pathogénèse du syndrome neurodégénératif SCAN1, qui est causé par une déficience en Tdp1. / Topoisomerase I (Top1) removes DNA supercoiling generated during transcription by producing Top1-DNA cleavage complexes (Top1cc). These transient Top1cc can be stabilized by camptothecins, from which anticancer drugs are derived, and by common DNA alterations. Although stabilized Top1cc are potent transcription-blocking lesions, our understanding regarding the molecular processes resulting from the stalling of transcription complexes by Top1cc is currently limited. Previous work showed that stabilized Top1cc produce transcription-dependent DNA double-strand breaks (DSBs) that activate ATM signalling. In this project, we used camptothecin-treated quiescent cells to induce transcription-blocking Top1cc and study the mechanisms of DSB production and signalling. We show that DSBs form preferentially at subtelomeric regions during the repair of transcription-blocking Top1cc from DNA single-strand breaks generated after Top1 proteolysis and before Tdp1 action. Analysis of DSB signalling reveals a novel function of DNA-PK in promoting protein ubiquitination leading (i) to full ATM activity at DSB sites by promoting H2AX and H2A ubiquitination, and (ii) to enhancement of Top1cc repair by promoting Top1 proteolysis. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these findings provide new insights into the cellular responses to camptothecins and further suggest that DSBs arising from transcription-blocking Top1cc may contribute to the pathogenesis of the neurodegenerative SCAN1 syndrome, which is caused by Tdp1 deficiency.
|
6 |
Modulation de la réponse inflammatoire intestinale par la kinase DNA-PKRoy, Evelyne January 2007 (has links)
Des résultats obtenus antérieurement au laboratoire ont démontré l'induction des facteurs de transcription C/EBPs par l'IL-1? ainsi que leur implication dans la régulation de la transcription de gènes de réponse inflammatoire telle que l'haptoglobine au niveau de la cellule épithéliale intestinale. En outre, il a déjà été démontré que la phosphoiylation des C/EBPs peut moduler leur activité et des études au laboratoire ont démontré l'interaction in vitro entre l'isoforme C/EBP? et la kinase DNA-PK. Par l'utilisation de l'inhibiteur non spécifique de la famille PI(3)K, la wortmannine, il a été observé que la DNA-PK phosphoryle C/EBP?. La DNA-PK est une kinase qui répare les bris d'ADN double brin en participant au processus de jonction des extrémités non-homologues. Ainsi, nous avons étudié la modulation de la réponse inflammatoire intestinale par la DNA-PK, en s'attardant plus particulièrement à deux familles de facteurs de transcription, soit NF-?B et les C/EBPs. Par l'utilisation d'un inhibiteur sélectif de la DNA-PK, le IC60211, la phosphorylation in vitro de la région N-terminale de C/EBP? par la DNA-PK a d'abord été confirmé. Puisque la DNA-PK est activée par les bris d'ADN double brin, la doxorubicine, un agent génotoxique, a été utilisé pour la suite du projet. Nous avons montré que la doxorubicine engendre une hausse de la capacité de liaison à l'ADN de NF-?B induite par l'IL-1? et que les complexes formés comprenaient surtout la sousunité p65. Ceci s'accompagne d'une hausse des niveaux nucléaires de p65 ainsi que d'une baisse d'expression de l'inhibiteur cytoplasmique de NF-?B, I?B?. Par contre, par l'utilisation de l'inhibiteur sélectif de la DNA-PK, le NU7026, nos résultats suggèrent que ces effets sont DNA-PK indépendants. En effet, un rétablissement de la capacité de liaison à l'ADN de NF-?B n'est pas observé lors d'une préincubation avec cet inhibiteur avant de traiter à la doxorubicine puis à l'IL-1?. En ce qui concerne les C/EBPs, nos résultats démontrent que la doxorubicine diminue l'activité transcriptionnelle de l'isoforme C/EBP? sur le promoteur du gène haptoglobine. Alors qu'un traitement à l'IL-1? induit une augmentation de la liaison des C/EBPs à HaptoA, nos résultats montrent qu'un pré-traitement à la doxorubicine empêche cette induction. De plus, les niveaux protéiques de C/EBP? et C/EBP? induits par l'IL-1? sont abaissés par la doxorubicine. Également, les niveaux d'ARNm de C/EBP? induits par l'IL-1 p et de deux de ses gènes cibles inflammatoires, l'haptoglobine et lipocalin2, sont diminués par un prétraitement à la doxorubicine. Par l'utilisation du NU7026, nous démontrons un rétablissement partiel de la capacité de liaison à l'ADN de C/EB13? et de C/EBP? qui était réduite par un traitement à la doxorubicine, à des niveaux comparables à la condition sans traitement et à la condition IL-1?, respectivement. Cependant, cet inhibiteur permet le rétablissement des niveaux de protéine et d'ARNm de C/EBP? (induits par l'IL-1?) qui étaient réprimés par un prétraitement à la doxorubicine mais non des niveaux protéiques de C/EBP?. Nos résultats suggèrent que la DNA-PK régule, au moins partiellement, la transcription de l'isoforme C/EBP? ainsi que son activité transcriptionnelle sur le promoteur de l'haptoglobine. Par contre, nos résultats suggèrent aussi que la DNA-PK module la capacité de liaison à l'ADN de C/EBP? et que l'effondrement des niveaux protéiques de C/EBP? par la doxorubicine est DNA-PK indépendant. [Symboles non conformes]
|
7 |
Nuclear Basic Fibroblast Growth Factor Regulation of Triple-Negative Breast Cancer Dormancy/RecurrenceLi, Shenduo January 2014 (has links)
<p>Chemotherapy remains the only available treatment for triple-negative (TN) breast cancer. Although some TN breast cancers respond initially to neoadjuvant chemotherapy, the majority of patients die within three years of treatment due to recurrent tumor growth. Developing ex vivo models for TN breast cancer recurrence and defining responsible molecules will be crucial to developing effective combination therapies for TN breast cancer patients. We have developed an in vitro model of TN breast cancer dormancy/recurrence. Short-term exposure of tumor cells to chemotherapy at clinically relevant doses enriches for a dormant tumor cell population. Several days after removing chemotherapy, dormant tumor cells regain proliferative ability and establish colonies, resembling tumor recurrence. Tumor cells from "recurrent" colonies exhibit increased chemotherapy resistance, resembling therapy resistance of recurrent tumors in patients. Furthermore, we identify a novel signaling axis [nuclear bFGF/DNA-dependent protein kinase (DNA-PK)] supported by chemotherapy-enriched dormant TN breast cancer cells. This signaling axis drives accelerated DNA repair in chemo-residual TN breast cancer cells. Targeting this axis with either with a bFGF shRNA or DNA-PK small molecule inhibitor blocks recurrent colony formation. Using the Oncomine gene expression database, we found that bFGF expression in tumor samples from TN breast cancer patients predicts five year tumor recurrence following neoadjuvant chemotherapy treatment. Finally, we demonstrate that recurrent tumor cells exhibit increased invasiveness, reflecting the aggressive behavior of recurrent tumors in patients. Collectively, these studies identify a novel signaling axis in TN breast cancer that likely contributes to tumor recurrence and provide molecular targets for developing future therapeutics against TN breast cancer.</p> / Dissertation
|
8 |
Radiation response in human cells : DNA damage formation, repair and signalingGustafsson, Ann-Sofie January 2015 (has links)
Ionizing radiation induces a range of different DNA lesions. In terms of mutation frequency and mammalian cell survival, the most critical of these lesions is the DNA double-strand break (DSB). DSB left unrepaired or mis-repaired may result in chromosomal aberrations that can lead to permanent genetic changes or cell death. The complexity of the DNA damage and the capacity to repair the DSB will determine the fate of the cell. This thesis focuses on the DNA damage formation, repair and signaling after irradiation of human cells. Radiation with high linear energy transfer (LET) produces clustered damaged sites in the DNA that are difficult for the cell to repair. Within these clustered sites, non-DSB lesions are formed that can be converted into a DSB and add to the damage complexity and affect DSB repair and the measurement. Heat-labile sites in DNA are converted into DSB at elevated temperatures. We show that heat-released DSB are formed post-irradiation with high-LET ions and increase the initial yield of DSB by 30%-40%, which is similar to yields induced by low-LET radiation. DNA-PKcs, a central player in non-homologous end-joining (NHEJ), the major mammalian DSB repair pathway, has been found to be both up- and downregulated in different tumor types. In Paper II we show that low levels of DNA-PKcs lead to extreme radiosensitivity but, surprisingly, had no effect on the DSB repair. However, the fraction of cells in G2/M phase increased two-fold in cells with low levels of DNA-PKcs. The study continued in Paper IV, where cells were synchronized to unmask potential roles of DNA-PKcs in specific cell cycle phases. Irradiation of DNA-PKcs suppressed cells in the G1/S phase caused a delay in cell cycle progression and an increase in accumulation of G2 cells. Further, these cells showed defects in DNA repair, where a significant amount of 53BP1 foci remained after 72 h. This further strengthens the hypothesis that DNA-PKcs has a role in regulation of mitotic progression. Several cellular signaling pathways are initiated in response to radiation. One of these downstream signaling proteins is AKT. We identified an interaction between DNA-PKcs and AKT. Knockouts of both AKT1 and AKT2 impaired DSB rejoining after radiation and low levels of DNA-PKcs increased radiosensitivity and decreased DNA repair further.
|
9 |
Structural studies of two proteins involved in the maintenance of genomic stability, FEN 1 and DNA-PKcsParker, James M. January 2016 (has links)
Genomic stability refers to an organism’s ability to maintain and pass forward its genetic information. There are a raft of proteins and pathways whose sole purpose is maintaining this stability through swiftly replicating DNA as well as accurately repairing damage caused through contact with endogenous and exogenous DNA damaging elements. This study will focus on the structural aspects of two proteins that play a part in different areas of genome maintenance. Flap Endonuclease 1 (FEN 1) works in DNA replication, where it is tasked with removing a small RNA flap that is created during Okazaki fragment formation. This flap removal is essential to mature these fragments into one continuous strand of nascent DNA. Using the archeon Pyrococcus abyssi (Pab) as a model system has the advantage of possessing simple replicative machinery, whilst bearing striking similarities with the human system. Pab is a hyperthermophilic, piezophile meaning it thrives in conditions of high temperature and pressure. DNA-dependent protein kinase (DNA-PK) is a holoenzyme that plays a role in the Non Homologous End Joining (NHEJ) pathway by repairing DNA double strand breaks (DSB’s). In cancer therapy, a patient is exposed to DNA damaging elements, leading to an ever-increasing population of DSBs. If an inhibitor of DNA-PKcs were introduced along with this therapy it could potentiate its effect, as the cancerous cells will be less able to repair the damage. The aim of this part of the study is to determine a protocol to generate pure, soluble, correctly folded protein for the purposes of biophysical characterisation and X-ray crystallographic structural studies.
|
10 |
DNA-PK, ATM and ATR Collaboratively Regulate p53-RPA Interaction to Facilitate Homologous Recombination DNA RepairSerrano, M. A., Li, Z., Dangeti, M., Musich, P. R., Patrick, S., Roginskaya, Marina, Cartwright, B., Zou, Y. 09 May 2013 (has links)
Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.
|
Page generated in 0.0204 seconds