21 |
Email Classification : An evaluation of Deep Neural Networks with Naive BayesMichailoff, John January 2019 (has links)
Machine learning (ML) is an area of computer science that gives computers the ability to learn data patterns without prior programming for those patterns. Using neural networks in this area is based on simulating the biological functions of neurons in brains to learn patterns in data, giving computers a predictive ability to comprehend how data can be clustered. This research investigates the possibilities of using neural networks for classifying email, i.e. working as an email case manager. A Deep Neural Network (DNN) are multiple layers of neurons connected to each other by trainable weights. The main objective of this thesis was to evaluate how the three input arguments - data size, training time and neural network structure – affects the accuracy of Deep Neural Networks pattern recognition; also an evaluation of how the DNN performs compared to the statistical ML method, Naïve Bayes, in the form of prediction accuracy and complexity; and finally the viability of the resulting DNN as a case manager. Results show an improvement of accuracy on our networks with the increase of training time and data size respectively. By testing increasingly complex network structures (larger networks of neurons with more layers) it is observed that overfitting becomes a problem with increased training time, i.e. how accuracy decrease after a certain threshold of training time. Naïve Bayes classifiers performs worse than DNN in terms of accuracy, but better in reduced complexity; making NB viable on mobile platforms. We conclude that our developed prototype may work well in tangent with existing case management systems, tested by future research.
|
22 |
Acoustic-articulatory DNN Model based on Transfer Learning for Pronunciation Error Detection and Diagnosis / 発音誤りの検出と診断のための転移学習に基づく音響・調音DNNモデル / # ja-KanaDuan, Richeng 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第21391号 / 情博第677号 / 新制||情||117(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 河原 達也, 教授 黒橋 禎夫, 教授 壇辻 正剛, 准教授 南條 浩輝 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
23 |
EXAMPLE-BASED TERRAIN AUTHORING WITH COMPLEX FEATURESSandeep Malatesh Nadig (14222117) 07 December 2022 (has links)
<p>Synthesis of terrains with complex features has been a challenging problem in computer graphics since most of the existing methods are based on the height field representation. Complex features in terrains adds to the overall realism of the terrain. Hence, there is a need to synthesize terrains in real-time with complex features that adhere to user input. The methodology described in this thesis describes a novel way to synthesize terrains with complex features based on user drawn sketches. Layered stack data structure is used to ensure that the resulting terrain has complex features. Since, Neural Networks are used to generate the terrains, the process is real-time.</p>
|
24 |
Low-Power Smart Devices for the IoT RevolutionNardello, Matteo 17 September 2020 (has links)
Internet of Things (IoT) is a revolutionary paradigm approaching both industries and consumers everyday life. It refers to a network of addressable physical objects that contain embedded sensing, communication and actuating technologies, to sense and interact with the environment where being deployed. It can be considered as a modern expression of Mark Weiser's vision of ubiquitous computing where tiny networked computers become part of everyday objects, fusing together the virtual world and the physical word.
Recent advances in hardware solutions have led to the emergence of powerful wireless IoT systems that are entirely energy-autonomous. These systems extract energy from their environment and operate intermittently, only as power is available. Battery-less sensors present an opportunity for the pervasive wide-spread of remote sensor deployments that require little maintenance and have low cost. As the number of IoT endpoint grows -- industry forecast trillions of connected smart devices in the next few years -- new challenges to program, manage and maintain such a huge number of connected devices are emerging. Web technologies can significantly ease this process by providing well-known patterns and tools - like cloud computing - for developers and users. However, the existing solutions are often too heavyweight or unfeasible for highly resource-constrained IoT devices.
This dissertation presents a comprehensive analysis of two of the biggest problems that the IoT is currently facing: R1) How are we going to provide connectivity to all these devices? R2) How can we improve the quality of service provided by these tiny autonomous motes that rely only on limited energy scavenged from the environment?
The first contribution is the study and deployment of a Low-Power Wide-Area-Network as a feasible solution to provide connectivity to all the expected IoT devices to be deployed in the following years. The proposed technology offers a novel communication paradigm to address discrete IoT applications, like long-range (i.e., kilometers) at low-power (i.e., tens of mW). Moreover, results highlight the effectiveness of the technology also in the industrial environment thanks to the high immunity to external noises.
In the second contribution, we focus on smart metering presenting the design of three smart energy meters targeted to different scenarios. The first design presents an innovative, cost-effective smart meter with embedded non-intrusive load monitoring capabilities intended for the domestic sector. This system shows an innovative approach to provide useful feedback to reduce and optimize household energy consumption. We then present a battery-free non-intrusive power meter targeted for low-cost energy monitoring applications that lower both installation cost due to the non-intrusive approach and maintenance costs associated to battery replacement. Finally, we present an energy autonomous smart sensor with load recognition capability that dynamically adapts and reconfigures its processing pipeline to the sensed energy consumption. This enables the sensor to be energy neutral, while still providing power consumption information every 5 minutes.
In the third contribution, we focus on the study of low-power visual edge processing and edge machine learning for the IoT. Two different implementations are presented. The first one discusses an energy-neutral IoT device for precision agriculture, while the second one presents a battery-less long-range visual IoT system, both leveraging on deep learning algorithms to avoid unnecessary wireless data communication. We show that there is a clear benefit from implementing a first layer of data processing directly in-situ where the data is acquired, providing a higher quality of service to the implemented application.
|
25 |
Reconstruction of tsunami characteristics from the deposits of large-scale tsunamis using a deep neural network inverse model / 深層ニューラルネットワーク逆解析モデルを用いた巨大津波堆積物に基づく津波の特徴の復元Mitra, Rimali 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23455号 / 理博第4749号 / 新制||理||1681(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 成瀬 元 助教 松岡 廣繁, 教授 生形 貴男 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
26 |
Variabeltryck med inkjet i dagspress : Möjligheten att införa anpassade upplagor / Variable print with inkjet in newspapers : The possibility of introducing customized editionsErikson, Pernilla January 2012 (has links)
På uppdrag av Tidningsutgivarna har en studie utförts angående olika möjligheter att införa tryck av variabeldata med tryckmetoden inkjet i svensk dagspress. Målet var att undersöka tekniska möjligheter och begränsningar samt att utreda om det fanns något intresse på marknaden som skulle kunna ge någon avkastning. Studien utfördes med hjälp av noggranna källstudier och ett fortlöpande samarbete med olika företag med intresse för dagspress. Rapporten beskriver också företag som arbetar med den här typen av innovationer idag och diverse tidigare projekt med variabeltryckta tidningar. Nya teknologier som eventuellt kan vara av intresse för framtida utveckling har också beskrivits och hur tidningens framtid kommer att se ut ur ett kortare och ett längre perspektiv. Studien visar att inkjetpressar inte klarar av den hastighet som de moderna tidningspressarna håller idag. Men i takt med minskade upplagor och utvecklad teknologi, samt ett stort marknadsmässigt intresse så tyder det på att det kommer att finnas möjlighet att tillverka anpassade digitaltryckta tidningsupplagor inom en överskådlig framtid. Inkjet kan fungera som ett bra komplement till offset. Inlinepressar ger möjligheten att införa variabeltryck i stora tidningsupplagor medan separata inkjetpressar passar bra för tryck av mindre lokala upplagor. / By an assignment from the Swedish Media Publishers’ Association a study has been carried out about various opportunities to introduce printing of variable data with inkjet in Swedish newspapers. The aim was to investigate the technical possibilities and limitations, and if there was any interest in the market that would give any return of investment. The study was conducted by accurate studying of sources and a continuous cooperation with different companies with interest in the newspapers. The study shows that inkjet presses can’t handle the speed of the modern newspaper presses yet today. But it could work as a good complement to offset printing and the technique will continue to develop. It will be launched more printing presses with hybrid solutions in the near future.
|
27 |
Interpretability and Accuracy in Electricity Price Forecasting : Analysing DNN and LEAR Models in the Nord Pool and EPEX-BE MarketsMargarida de Mendoça de Atayde P. de Mascarenhas, Maria January 2023 (has links)
Market prices in the liberalized European electricity system play a crucial role in promoting competition, ensuring grid stability, and maximizing profits for market participants. Accurate electricity price forecasting algorithms have, therefore, become increasingly important in this competitive market. However, existing evaluations of forecasting models primarily focus on overall accuracy, overlooking the underlying causality of the predictions. The thesis explores two state-of-the-art forecasters, the deep neural network (DNN) and the Lasso Estimated AutoRegressive (LEAR) models, in the EPEX-BE and Nord Pool markets. The aim is to understand if their predictions can be trusted in more general settings than the limited context they are trained in. If the models produce poor predictions in extreme conditions or if their predictions are inconsistent with reality, they cannot be relied upon in the real world where these forecasts are used in downstream decision-making activities. The results show that for the EPEX-BE market, the DNN model outperforms the LEAR model in terms of overall accuracy. However, the LEAR model performs better in predicting negative prices, while the DNN model performs better in predicting price spikes. For the Nord Pool market, a simpler DNN model is more accurate for price forecasting. In both markets, the models exhibit behaviours inconsistent with reality, making it challenging to trust the models’ predictions. Overall, the study highlights the importance of understanding the underlying causality of forecasting models and the limitations of relying solely on overall accuracy metrics. / Priserna på den liberaliserade europeiska elmarknaden spelar en avgörande roll för att främja konkurrens, säkerställa stabilitet i elnätet och maximera aktörernas vinster. Exakta prisprognoalgoritmer har därför blivit allt viktigare på denna konkurrensutsatta marknad. Existerande utvärderingar av prognosverktyg fokuserar emellertid på den övergripande noggrannheten och förbiser de underliggande orsakssambanden i prognoserna. Denna rapport utforskar två moderna prognosverktyg, DNN (Deep Neural Network) och LEAR (Lasso Estimated AutoRegressive) på elmarknaderna i Belgien respektive Norden. Målsättningen är att förstå om deras prognoser är pålitliga i mer allmänna sammanhang än det begränsade sammahang som de är tränade i. Om modellerna producerar dåliga prognoser under extrema förhållanden eller om deras prognoser inte överensstämmer med verkligheten så kan man inte förlita sig på dem i den verkliga världen, där prognoserna ligger till grund för beslutsfattande aktiviteter. Resultaten för Belgien visar att DNN-modellen överträffar LEAR-modellen när det gäller övergripande noggrannhet. LEAR-modellen presterar dock bättre när det gäller att förutse negativa priser, medan DNN-modellen presterar bättre när det gäller prisspikar. På den nordiska elmarknaden är en enklare DNN-modell mer noggrann för prisprognoser. På båda marknaden visar modellerna beteenden som inte överensstämmer med verkligheten, vilket gör det utmanande att lita på modellernas prognoser. Sammantaget belyser studien vikten av att förstå de underliggande orsakssambanden i prognosmodellerna och begränsningarna med att enbart förlita sig på övergripande mått på noggrannhet.
|
28 |
Energy Efficient Spintronic Device for Neuromorphic ComputationAzam, Md Ali 01 January 2019 (has links)
Future computing will require significant development in new computing device paradigms. This is motivated by CMOS devices reaching their technological limits, the need for non-Von Neumann architectures as well as the energy constraints of wearable technologies and embedded processors. The first device proposal, an energy-efficient voltage-controlled domain wall device for implementing an artificial neuron and synapse is analyzed using micromagnetic modeling. By controlling the domain wall motion utilizing spin transfer or spin orbit torques in association with voltage generated strain control of perpendicular magnetic anisotropy in the presence of Dzyaloshinskii-Moriya interaction (DMI), different positions of the domain wall are realized in the free layer of a magnetic tunnel junction to program different synaptic weights. Additionally, an artificial neuron can be realized by combining this DW device with a CMOS buffer. The second neuromorphic device proposal is inspired by the brain. Membrane potential of many neurons oscillate in a subthreshold damped fashion and fire when excited by an input frequency that nearly equals their Eigen frequency. We investigate theoretical implementation of such “resonate-and-fire” neurons by utilizing the magnetization dynamics of a fixed magnetic skyrmion based free layer of a magnetic tunnel junction (MTJ). Voltage control of magnetic anisotropy or voltage generated strain results in expansion and shrinking of a skyrmion core that mimics the subthreshold oscillation. Finally, we show that such resonate and fire neurons have potential application in coupled nanomagnetic oscillator based associative memory arrays.
|
29 |
Generative, Discriminative, and Hybrid Approaches to Audio-to-Score Automatic Singing Transcription / 自動歌声採譜のための生成的・識別的・混成アプローチNishikimi, Ryo 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23311号 / 情博第747号 / 新制||情||128(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)准教授 吉井 和佳, 教授 河原 達也, 教授 西野 恒, 教授 鹿島 久嗣 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
30 |
RMNv2: Reduced Mobilenet V2 An Efficient Lightweight Model for Hardware DeploymentMANEESH AYI (8735112) 22 April 2020 (has links)
Humans can visually see things and can differentiate objects easily but for computers, it is not that easy. Computer Vision is an interdisciplinary field that allows computers to comprehend, from digital videos and images, and differentiate objects. With the Introduction to CNNs/DNNs, computer vision is tremendously used in applications like ADAS, robotics and autonomous systems, etc. This thesis aims to propose an architecture, RMNv2, that is well suited for computer vision applications such as ADAS, etc.<br><div>RMNv2 is inspired by its original architecture Mobilenet V2. It is a modified version of Mobilenet V2. It includes changes like disabling downsample layers, Heterogeneous kernel-based convolutions, mish activation, and auto augmentation. The proposed model is trained from scratch in the CIFAR10 dataset and produced an accuracy of 92.4% with a total number of parameters of 1.06M. The results indicate that the proposed model has a model size of 4.3MB which is like a 52.2% decrease from its original implementation. Due to its less size and competitive accuracy the proposed model can be easily deployed in resource-constrained devices like mobile and embedded devices for applications like ADAS etc. Further, the proposed model is also implemented in real-time embedded devices like NXP Bluebox 2.0 and NXP i.MX RT1060 for image classification tasks. <br></div>
|
Page generated in 0.0267 seconds