1 |
Obstacle array drag coefficient parametric response surface analysisGanapathy, Mouthgalya 11 December 2009 (has links) (PDF)
Throughout literature, one finds where numerous methodologies and models have been developed to predict the effect of surface roughness on a flat surface. Many of the models utilize a drag coefficient as one of the necessary parameters. In urban settings with groups of buildings, the drag coefficient on an individual obstacle would be determined by parameters like wind direction and the relative positioning of a building, in addition to Reynolds number and shape. Computational experiments were performed to simulate the fluid flow around a single row and two rows of “cube” obstacles. Based on dimensional analysis, the drag coefficient was formulated as a function of four input variables. The effect of these input variables on the drag coefficient was individually studied. Finally, using the central composite design method and the numerically obtained experiment data, a second-order mathematical model was devised for the drag coefficient as a function of the four input variables.
|
2 |
An Investigation of Vertical Turbulent Transport Processes in Coastal Regions Using Tower ObservationsFurst, Jonathan Joseph 17 January 2013 (has links)
High-resolution tower observations of turbulent transport processes in the coastal atmospheric surface layer show that the exchange coefficients for momentum, enthalpy, and moisture behave differently for different environmental and atmospheric conditions. The drag coefficient is closely tied to wind speed and turbulent intensity. The exchange coefficient for enthalpy shows a dependence on stability. Analysis of the turbulent kinetic energy budget yields a new parameterization framework that well explains the observed variation of the drag coefficient, particularly at low wind speeds.
|
3 |
Droplet Drag Modeling on Spray ConditionsLin, Yushu 04 March 2024 (has links)
Numerical approaches have been conducted to investigate the effect of droplet deformation and internal circulation on droplet dynamics. Although droplet drag is a classical area of study, there are still theoretical gaps in understanding the motion of large droplets. In applications such as spray combustion, droplets of various sizes are generated and move with the flow. Large droplets tend to deform in the flow, and they have complex interactions with the flow because of this deformation. To better model spray, the physical understanding of droplets needs to be improved. Under spray conditions, droplets are subjected to a high-temperature-and-pressure environment, and the coupling between liquid and gas is enhanced. Therefore the deformation and internal circulation will affect the droplet drag coefficient more significantly than they would under atmospheric conditions. To study the mechanism of how droplet shape and internal circulation influence droplet dynamics, we have used direct numerical simulation (DNS) to simulate a droplet falling at its terminal velocity in high-pressure air. An in-house code developed for interface-capturing DNS of multiphase flows is employed for the simulation. The drag coefficient is calculated, and the results are consistent with the existing literature for slightly deformed droplets. The results show that the drag coefficient is directly related to the droplet deformation and droplet internal circulation. This paper also develops an analytical theory to account for the effect of the Weber number and fluid properties on droplet deformation. / Master of Science / This study investigates how larger droplets interact with airflow in spray conditions. Classical droplet drag models are not accurate under extreme conditions due to the neglect the droplet deformation and droplet internal circulation. To better understand droplet dynamics and to improve the accuracy of droplet models, direct numerical simulations were conducted. In our simulations, a non-evaporating falling droplet in high-pressure air was modeled. Results show a direct link between drag coefficient and droplet shape and internal flow. We also derived an analytical scaling law to explore the parameters related to droplet deformation. This research enhances our understanding of droplet dynamics in spray conditions.
|
4 |
Measurements and Linear Wave Theory Based Simulations of Vegetated Wave Hydrodynamics for Practical ApplicationsAnderson, Mary Elizabeth 2010 August 1900 (has links)
Wave attenuation by vegetation is a highly dynamic process and its quantification is important for accurately understanding and predicting coastal hydrodynamics. However, the influence of vegetation on wave dissipation is not yet fully established nor implemented in current hydrodynamic models. A series of laboratory experiments were conducted at the Haynes Coastal Engineering Laboratory and in a two-dimensional flume at Texas A and M University to investigate the influence of relative vegetation height, stem density, and stem spacing uniformity on wave attenuation. Vegetation fields were represented as random cylinder arrays where the stem density and spatial variation were based on collected field specimens. Experimental results indicate wave attenuation is dependent on relative vegetation height, stem density, and stem spacing standard deviation. As stems occupy more of the water column, an increase in attenuation occurred given that the highest wave particle velocities are being impeded. Sparse vegetation fields dissipated less wave energy than the intermediate density; however, the extremely dense fields dissipated very little, if any, wave energy and sometimes wave growth was observed. This is possibly due to the highest density exceeding some threshold where maximum wave attenuation capabilities are exceeded and lowering of damping ensues. Additionally, wave attenuation increased with higher stem spatial variation due to less wake sheltering. A one-dimensional model with an analytical vegetation dissipation term was developed and calibrated to these experimental results to capture the wave transformation over the vegetation beds and to investigate the behavior of the vegetation field bulk drag coefficient. The best fit between predicted and measured wave heights was obtained using the least squares method considering the bulk drag coefficient as the single calibration parameter. The model was able to realistically capture the wave transformations over vegetation. Upon inspection, the bulk drag coefficient shared many of the dependencies of the total wave dissipation. The bulk drag coefficient increased with larger relative vegetation heights as well as with higher stem spacing standard deviation. Higher densities resulted in a lowering of the bulk drag coefficient but generally an increase in wave attenuation. These parameters and their influences help in identifying the important parameters for numerical studies to further our understanding of wave attenuation by wetlands.
|
5 |
The effect of grid scale on calibration of two-dimensional river models through the drag coefficientChisolm, Rachel Elizabeth 17 June 2011 (has links)
New survey technologies are able to provide detailed data on the form and topography of riverbeds. With this increased data resolution, the required computational time rather than data availability has become the limiting factor for river models. Detailed bathymetric data can be used to provide better empirical representation of drag and roughness at fine scales, allowing a priori selection of roughness using known physics rather than a posteriori calibration. However, we do not have sufficient guidance or understanding from the literature to represent known heterogeneities smaller than our practical grid scale. The problem is what to do with known subgrid-scale bathymetric features and roughness when our models must use a coarser computational grid. In this project, we simplify this complex problem to analyzing flow in a simple open channel with a single patch of relatively high roughness against an otherwise uniform background of low roughness. We model this open channel with a two-dimensional, depth-averaged river model. By running multiple simulations using different grid sizes we gain insight into how the relationship between the grid cell size and the patch size affects the appropriate physical selection of roughness parameter.
As the primary focus, the present work proposes and investigates several methods for upscaling known fine-scale drag coefficient data to a coarser grid resolution for a model. For the tested conditions, it appears that a simple area-weighted linear average is simple to apply and creates a flow field very similar to the best results achieved by calibration.
As a secondary issue, the present work examines grid-dependent behaviors when using model calibration. Although recalibration of models for different grid scales is a common practice among modelers, we could find relatively little documentation or analysis. In our work, we examine both single-cell calibration (i.e. changing roughness in only the cell containing the rough patch) and multiple-grid cell calibration involving neighbor cells. With either method, improving calibration required multiple model simulations and comparative analysis for each tested grid size and was inefficient compared to the upscaling approach. As expected, the calibration at a given grid size was always inappropriate for a different grid size. / text
|
6 |
CFD Investigation of Aerodynamic Drag Reduction for an Unloaded Timber TruckColombi, Raffaele January 2018 (has links)
The road transport industry is facing a strong need for fuel consumption reduction, driven by the necessity of decreasing polluting emissions, such as CO2 and NOX, as well as coping with strict regulations and increasing fuel costs. For road vehicles the aerodynamic drag constitutes a major source of energy consumption, and for this reason improving the aerodynamic performance of the vehicle is an established approach for reducing fuel consumption and greenhouse gases emissions. In this Thesis work, Computational Fluid Dynamics (CFD) investigations have been carried out in order to investigate and improve the aerodynamic performance of an unloaded timber truck. The work has been divided in two parts. In a first phase, a preliminary study was carried out on a simplified tractor-trailer model in order to establish a suitable computational grid and turbulence model. The hexcore-mesh showed a better performance over the tet- and poly-mesh types. Among the selected RANS turbulence models, the Realizable k − ε with Enhanced Wall Treatment (EWT) and y+ > 30 showed the highest reliability of results in comparison with experimental data and existing CFD investigations. In a second phase, the flow field around the baseline unloaded timber truck was analysed in order to highlight potential regions for drag reduction. The truck cabin-bulkhead gap, bunks, the exposed wheels and the stakes were found make key contribution to the drag build-up. The analysis confirmed the 5◦-yaw case to be the most representative for the wind-averaged drag coefficient. Geometry modifications were implemented in order to improve the aerodynamic performance in the selected areas, and subsequently combined into aero-kits in order to enhance the performance, analysed for the 5◦-yaw case. The combination of extended side skirts, bulkhead shield and collapsed stakes yielded a remarkable result of more than 30% decrease in the wind-averaged drag coefficient, achieved by reducing the flow separation on the cabin leeward A-pillar, and by shielding areas of high stagnation pressure from the side wind. Furthermore, a parallel study was conducted on the development of a procedure for the automatic post-processing of results. The outcome was a set of Python scripts to be used with Kitaware Paraview in order to automatically obtain figures of surface variables distributions, iso-surfaces, velocity profiles, drag build-up and total pressure contours. The procedure was finally extended to include the case comparison. / ETTaero2
|
7 |
All Organic Polymers Based Morphing Skin with Controllable Surface TextureFavero Bolson, Natanael 05 1900 (has links)
Smart skins are integrating an increasing number of functionalities in order to improve the interaction between the systems they equip and their ambient environment. Here we have developed an electromechanical soft actuator with controlled surface texture due to applied thermal gradient via electrical voltage. The device was fabricated and integrated with optimized process parameters for a prepared heater element [doped PEDOT: PSS (poly-(3, 4 ethylenedioxythiophene): poly (styrene sulfonic acid))], a soft actuator (Ecoflex 00-50/ethanol) and overall packaging case [PDMS (polydimethylsiloxane)]. To study a potential application of the proposed smart skin, we analyze the fluid drag reduction in a texture controlled water flow unit. As a result, we obtained a reduction of approximately 14% in the skin drag friction coefficient during the actuation. We conclude that the proposed soft actuator device is a preferred option for a texture-controlled skin that reduces the skin drag friction coefficient.
|
8 |
Drag coefficient modelling study for flexible vegetation in open channel flowHussain, Awesar, Pu, Jaan H., Hanmaiahgari, P.R. 10 November 2018 (has links)
No / Vegetation remains to be an important factor that can hinder the river flow. It needs innovative management scheme, in order
to adapt these changes and ensure sustainability of their multiple usages. Vegetation plays an important role in floods and
droughts adaptation within river system to alleviate any flood that may propagates from river to its surrounding. Vegetation within
river can also retard its flow to cause building-up of deposition, and further adding to uncertainty of water use under extreme
droughts. Due to these, it is important to study and understand vegetation drag behaviour toward flow in order to prevent flood
risk and water security with hydrological drought in the basin and any other negative impact caused by it. In this study, an
analytical approach for river flooding has been studied by improved representation of drag coefficient CD in flow velocity
distribution modelling. The analysis of flow parameters, i.e. Reynolds number, on the drag coefficient CD has been conducted.
The presented model has been used and analysed in open channel flows with flexible vegetation. In modelling, the flexible
vegetated channel layers were divided into vegetation, top of vegetation and water layer zones in the model. The balance of
forces for each layer has been established by validation using different reported measured data. The modelling results showed
reasonably corresponding prediction of velocity profile in flows with flexible vegetation.
|
9 |
Experimental Investigation of Wind-induced Response of Span-wire Traffic Signal SystemsMatus, Manuel A., Mr. 27 March 2018 (has links)
The purpose of this investigation was to identify key design parameters that might significantly affect the response of span wire traffic light systems during extreme wind events. The performance of these systems was assessed through physical testing in an effort to quantify the effect of sag ratio, wire tension and wire clearance. The Wall of Wind experimental facility at Florida International University was utilized for testing the systems at different wind speeds and wind directions.
The findings showed that, at all tested wind directions, lift, drag and tension forces increased with increasing wind speeds. On the contrary, increasing the wind speed resulted in higher inclination on the traffic lights, lower drag coefficients and higher lift coefficients. Overall, when the wind was approaching from the rear face of the traffic signals, increased drag coefficients were recorded. When the sag was set at 7% lower drag coefficients were observed.
|
10 |
Flow resistance and associated backwater effect due to spur dikes in open channelsAzinfar, Hossein 01 March 2010
A spur dike is a hydraulic structure built on the bank of a river at some angle to the main flow direction. A series of spur dikes in a row may also be placed on one side or both sides of a river to form a spur dike field. Spur dikes are used for two main purposes, namely river training and bank protection. For river training, spur dikes may be used to provide a desirable path for navigation purposes or to direct the flow to a desirable point such as a water intake. For bank protection, spur dikes may be used to deflect flow away from a riverbank and thus protect it from erosion. It has also been observed that spur dikes provide a desirable environment for aquatic habitat. Despite the fact that spur dikes are useful hydraulic structures, they have been found to increase the flow resistance in rivers and hence increase the flow stage. The present study focuses on the quantification of the flow resistance and associated flow stage increase due to a single spur dike and also that of a spur dike field. Increased flow stage is referred to herein as a backwater effect.<p>
In the first stage of the study, the flow resistance due to a single spur dike, expressed as a drag force exerted on the flow in an open channel, was studied and quantified. The work was carried out in a rigid bed flume, with the model spur dike being simulated using various sizes of a two-dimensional (2-D) rectangular plate. Several discharge conditions were studied. The drag force exerted by the spur dike for both submerged and unsubmerged flow conditions was determined directly from measurements made using a specially designed apparatus and also by application of the momentum equation to a control volume that included the spur dike. It was found that the unit drag force (i.e., drag force per unit area of dike) of an unsubmerged spur dike increases more rapidly with an increase in the discharge when compared with that of a submerged spur dike. The results also showed that an increase in the blockage of the open channel cross-section due to the spur dike is the main parameter responsible for an increase in the spur dike drag coefficient, hence the associated flow resistance and backwater effect. Based on these findings, relationships were developed for estimating the backwater effect due to a single spur dike in an open channel.<p>
In the second stage of the study, the flow resistance due to a spur dike field expressed as a drag force exerted on the flow was quantified and subsequently related to the backwater effect. The work was carried out in a rigid bed flume, with the model spur dikes simulated using 2-D, rectangular plates placed along one side of the flume. For various discharges, the drag force of each individual spur dike in the spur dike field was measured directly using a specially-designed apparatus. For these tests, both submerged and unsubmerged conditions were evaluated along with various numbers of spur dikes and various relative spacings between the spur dikes throughout the field. It was concluded that the configuration of a spur dike field in terms of the number of spur dikes and relative spacing between the spur dikes has a substantial impact on the drag force and hence the flow resistance and backwater effect of a spur dike field. The most upstream spur dike had the highest drag force amongst the spur dikes in the field, and it acted as a shield to decrease the drag force exerted by the downstream spur dikes. From the experiments on the submerged spur dikes, it was observed that the jet flow over the spur dikes has an important effect on the flow structure and hence the flow resistance.<p>
In the third stage of the study, the flow field within the vicinity of a single submerged spur dike was modeled using the three-dimensional (3-D) computational fluid dynamic (CFD) software FLUENT. Application of the software required solution of the 3-D Reynolds-averaged Navier-Stokes equations wherein the Reynolds stresses were resolved using the RNG ê-å turbulence model. One discharge condition was evaluated in a smooth, rectangular channel for two conditions, including uniform flow conditions without the spur dike in place and one with the spur dike in place. The CFD model was evaluated based on some experimental data acquired from the physical model. It was found that the CFD model could satisfactorily predict the flow resistance and water surface profile adjacent to the spur dike, including the resulting backwater effect. Furthermore, the CFD model gave a good prediction of the velocity field except for the area behind the spur dike where the effects of diving jet flow over the spur dike was not properly modeled.
|
Page generated in 0.0221 seconds