• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 16
  • 14
  • 12
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The calibration and sensitivity analysis of a storm surge model for the seas around Taiwan

Pai, Kai-chung 10 August 2009 (has links)
The topographical variations of the seas around Taiwan are great, which make the tides complicated. Taiwan is located in the juncture of the tropical and subtropical area. Geographically, it is located within the region of northwestern Pacific typhoon path. These seasonal and geographical situations causing Taiwan frequently threaten by typhoons during summer and autumn. In addition to natural disasters, the coastal area is over developed for the last few decades, which destroys the balance between nature and man. Storms and floods constantly threaten the lowland areas along the coast. An accurate and efficient storm surge model can be used to predict tides and storm surges. The model can be calibrated and verified with the field observations. Data measured by instruments at the tidal station constituting daily tidal variations and storm surge influences during typhoons. The model can offer both predictions to the management institutions and to the general public as pre-warning system and thus taking disaster-prevention measures. This study implements the numerical model, developed by Yu (1993) and Yu et al. (1994) to calculate the hydrodynamic in the seas around Taiwan. The main purpose of this study is to make a calibration and sensitivity analysis of the model parameters. Tidal gauge data around Taiwan coastal stations collected from June to October 2005 are used for the analysis and the comparison between the modeled data and the observations. Two steps have been taken for the model calibration and sensitivity analysis. First step is to calibrate the model for accurate prediction of the astronomical tide, and then the compound tide with meteorological influences. For the calibration of the astronomical tides, sensitivity analysis has been carried out by adjusting the horizontal diffusion coefficient and the bottom friction coefficients used in the model. The sensitivity of the time-step size used in the model and model grids fitted to coastlines are also checked. A depth dependent Chézy numbers are used in the model to describe bottom friction. The model has a better result when the Chézy value varied within 65 to 85. Modifying grids fitted to the coastline has improved the model results significantly. By improving the dynamic phenomenon brought about by the land features, the model calculation fits the real tidal phenomenon better. The analysis has shown that the model is less sensitive to the horizontal diffusion coefficient. Data from 22 tidal stations around Taiwan have been used for the comparisons. The maximum RMSE (root-mean-square error) is about 10 cm at WAi-Pu, whereas the minimum RMSE is about 1 cm for the stations along eastern coast. The calibration of the compound tide is divided into three cases. The first case is to calibrate the forecasted wind field. This has been done by comparing the forecasted wind field from the Central Weather Bureau with the satellite data obtained from QuikSCAT¡XLevel 3. The satellite wind speed has been applied to adjust the forecasted wind speed. The adjusted forecast wind field has shown improvement to the model predictions in the tidal stations south of Taichung, slightly improved in the eastern coast. The second case is tuning the drag coefficient on sea surface used by the hydrodynamic model. Several empirical formulas to describe the sea surface drag have been tested. The model result has shown little influence using various drag formulations. The third case is to single the influences by the meteo-inputs, i.e. the wind field and the atmospheric pressure. The tidal level is more sensitive to the variation of the atmospheric pressure through out the tests carried out during typhoon periods. The model simulation for 2006 using the best selected parameters has shown that the model is consisted with good stability and accuracy for both stormy and calm weather conditions.
22

Aerodynamic Validation of Emerging Projectile Configurations

Sor, Wei Lun 01 November 2012
Approved for public release; distribution is unlimited. / Ever-increasing demands for accuracy and range in modern warfare have expedited the optimization of projectile design. The crux of projectile design lies in the understanding of its aerodynamic properties early in the design phase. This research first investigated the aerodynamic properties of a standard M549, 155mm projectile. The transonic speed region was the focus of the research as significant aerodynamic variation occurs within this particular region. Aerodynamic data from wind tunnel and range testing was benchmarked against modern aerodynamic prediction programs like ANSYS CFX and Aero-Prediction 09 (AP09). Next, a comparison was made between two types of angle of attack generation methods in ANSYS CFX. The research then focused on controlled tilting of the projectile’s nose to investigate the resulting aerodynamic effects. ANSYS CFX was found to provide better agreement with the experimental data than AP09.
23

An?lise aerodin?mica de perfis de asa para aeronaves experimentais tipo jn-1

Ribeiro, Fernanda Alves 25 February 2011 (has links)
Made available in DSpace on 2014-12-17T14:58:10Z (GMT). No. of bitstreams: 1 FernandaAR_DISSERT.pdf: 8485678 bytes, checksum: eca5de592a0a48a71b782d8289da3a31 (MD5) Previous issue date: 2011-02-25 / The great importance in selecting the profile of an aircraft wing concerns the fact that its relevance in the performance thereof; influencing this displacement costs (fuel consumption, flight level, for example), the conditions of flight safety (response in critical condition) of the plane. The aim of this study was to examine the aerodynamic parameters that affect some types of wing profile, based on wind tunnel testing, to determine the aerodynamic efficiency of each one of them. We compared three types of planforms, chosen from considerations about the characteristics of the aircraft model. One of them has a common setup, and very common in laboratory classes to be a sort of standard aerodynamic, it is a symmetrical profile. The second profile shows a conFiguration of the concave-convex type, the third is also a concave-convex profile, but with different implementation of the second, and finally, the fourth airfoil profile has a plano-convex. Thus, three different categories are covered in profile, showing the main points of relevance to their employment. To perform the experiment used a wind tunnel-type open circuit, where we analyzed the pressure distribution across the surface of each profile. Possession of the drag polar of each wing profile can be, from the theoretical basis of this work, the aerodynamic characteristics relate to the expected performance of the experimental aircraft, thus creating a selection model with guaranteed performance aerodynamics. It is believed that the philosophy used in this dissertation research validates the results, resulting in an experimental alternative for reliable implementation of aerodynamic testing in models of planforms / A import?ncia na escolha do perfil de asa de uma aeronave ? fun??o de sua relev?ncia no seu desempenho; influenciando desde os custos de deslocamento (consumo de combust?vel, n?vel de v?o, por exemplo), a condi??es de seguran?a do v?o (resposta em condi??es cr?ticas) do avi?o. O objetivo deste trabalho foi analisar quatro perfis de asa a fim de determinar alguns dos principais par?metros envolvidos no comportamento aerodin?mico e determinar a efici?ncia de cada um deles baseado em experimenta??o em t?nel de vento. Compararam-se quatro perfis de asa, escolhidos a partir de considera??es acerca das caracter?sticas do modelo da aeronave. Um deles apresenta uma configura??o sim?trica usual, sendo muito comum em aulas de laborat?rio por ser uma esp?cie de padr?o aerodin?mico. O segundo perfil apresenta uma configura??o do tipo c?ncavo-convexo; o terceiro, tamb?m ? um perfil c?ncavo-convexo, por?m, com aplica??o distinta do segundo; e, finalmente, o quarto aerof?lio possui um perfil plano-convexo. Para a realiza??o do experimento utilizou-se um t?nel aerodin?mico do tipo circuito aberto, onde analisaram-se as distribui??es de press?o em toda a superf?cie de cada perfil. De posse da curva polar de arrasto de cada perfil de asa pode-se, a partir da base te?rica deste trabalho, relacionar as caracter?sticas aerodin?micas ? expectativa de desempenho da aeronave experimental tipo JN-1, gerando assim um modelo de sele??o com garantia de performance aerodin?mica. Acredita-se que a filosofia de pesquisa utilizada nesta disserta??o legitima os resultados obtidos, consistindo-se em uma alternativa experimental confi?vel para execu??o de testes aerodin?micos em modelos de perfis de asa
24

Métrologie et modélisation des écoulements à forte pente autour d'obstacles : application au dimensionnement des passes naturelles / Metrology and modeling of large slope flow around obstacles : application to the dimensioning of natural passes

Tran, Dung Tien 11 December 2015 (has links)
Cette thèse est une partie du projet ONEMA pour le dimensionnement des passes à poissons et pour l’amélioration de la continuité écologique des cours d’eau. Ce travail s’est concentré sur les passes à poissons naturelles qui présentent des avantages de coût et paysager. Il s’agit d’un écoulement à forte pente autour des blocs (macro-rugosités) régulièrement repartis en quinconce avec des grands nombres de Froude. Les conditions hydrodynamiques sont alors très diverses, et peuvent être franchissables par un nombre élargi d’espèces de poisson. Ce mémoire présente les travaux réalisés à l’Institut de Mécanique des Fluides de Toulouse (IMFT). Afin d’étudier l’écoulement dans ces passes, on va mener des expériences sur des canaux réduits ainsi que des simulations numériques à l’aide du modèle Telemac 2D. L’objectif est de mieux connaître la structure de l’écoulement en fonction des conditions hydrauliques et géométriques comme le nombre, la forme et la taille des macro-rugosités. Plus particulièrement, la compréhension de l’interaction de phénomènes physiques généralement étudiés séparément, tels que le passage en régime torrentiel, l’interaction de sillage ou l’écoulement autour de macro-rugosités, a été recherchée. Des relations hauteur-débit ont été établies permettant une aider au dimensionnement des passes naturelles. Elles fournissent des critères de franchissement comme les vitesses maximales, la puissance dissipée ou la hauteur d’eau minimale. Pour atteindre une description plus locale de l’écoulement, des mesures de Vélocimétrie Acoustiques Doppler ont été conduites. Elles ont aussi permis de définir la plage de validité du modèle numérique 2D (Telemac). Ce modèle a alors était utilisé pour extrapoler les critères de franchissement pour des configurations non testées expérimentalement. Finalement, les connaissances sur l’écoulement ont été synthétisées pour définir des préconisations générales de dimensionnement. La précision des relations établies en laboratoire a pu aussi être vérifiée sur des passes réelles. L’hydrodynamique de ces passes est maintenant suffisamment connue pour savoir si un poisson peut remonter le courant et se reposer. Il restera à s’assurer que leur attractivité soit bonne et que des phénomènes liés aux échelles de longueurs de la turbulence ne présentent un obstacle au franchissement. / This thesis is supported by an ONEMA project for the design of fishways and improve ecological continuity of rivers. This work focused on nature-like fish passes that have cost and landscaped appearance advantages. There is a steep flow around the blocks (macro-roughness) regularly distributed in a staggered configuration with large Froude numbers. The hydrodynamic conditions are sufficiently different to be passable by an expanded number of fish species. This thesis presents the work carried out at the Institute of Fluid Mechanics of Toulouse (IMFT). To study the flow in these passes, experiments are conducted on physical models and numerical simulations using the Telemac 2D model. The goal is to better understand the flow structure based on hydraulic and geometric conditions such as the number, shape and size of macro-roughness. In particular, we considered the interaction of physical phenomena usually studied separately such that the passage in supercritical regime, the interaction of wake or flow around macro-roughness. The stage-discharge relationships were established to assist in the design of nature-like passes. They provide criteria useful for passability such as maximum speeds, power dissipation or minimal water height. To reach a local description of the flow measurements with an Acoustic Doppler Velocimeter were conducted. They also helped to define the valid range of the 2D model. This model was then used to extrapolate passability criteria for untested experimental configurations. Finally, the knowledge on flow has been synthesized to define general recommendations sizing. It has also been able to verify on real scale passes, the accuracy of the relations established in the laboratory. The hydrodynamics of these passes is now sufficiently described to know if a fish can swim upstream and rest. It will remain to ensure that their attractiveness is good and that phenomena related to the turbulence length scales do not present an obstacle to the fish passage.
25

Aerodynamická interakce autonomních vozidel / Aerodynamic interaction of autonomous vehicles

Opátová, Alexandra January 2020 (has links)
This thesis deals with CFD simulation of platooning vehicles and their aerodynamic characteristics, created in Star CCM+ software. The main focus is on their aerodynamic drag dependency on different spacing between vehicles which allowed to evaluate the most energy efficient distance for platoon of vehicles. Furthermore, the procedure how to calculate the fuel consumption is described for set of variables.
26

Aerosol Droplet Migration in Fibrous Media

Davoudi, Masoume 21 November 2018 (has links)
No description available.
27

The Effect of a Wake-Mounted Splitter Plate on the Flow around a Surface-Mounted Finite-Height Square Prism.

2014 June 1900 (has links)
The flow around a finite square prism has not been studied extensively when compared with an “infinite” (or two-dimensional) square prism. In the present study, the effect of a wake-mounted splitter plate on the flow around a surface-mounted square prism of finite height was investigated experimentally using a low-speed wind tunnel. Of specific interest were the combined effects of the splitter plate length and the prism’s aspect ratio on the vortex shedding, mean drag force coefficient, and the mean wake. Four square prisms of aspect ratios AR = 9, 7, 5 and 3 were tested at a Reynolds number of Re = 7.4×104 and a boundary layer thickness of /D = 1.5. Splitter plate lengths of L/D = 1, 1.5, 2, 3, 5, and 7, were tested, with all plates having the same height as the prism. Measurements of the mean drag force were obtained with a force balance, and measurements of the vortex shedding frequency were obtained with a single-component hot-wire probe. A seven-hole pressure probe was used to measure the time-averaged wake velocity at a Reynolds number of Re = 3.7×104 for AR = 9 and 5 with splitter plates of lengths L/D = 1, 3, 5, and 7. These measurements were carried out to allow for a better understanding of how the splitter plate affects the mean wake of the finite prism. The results show that the splitter plate is a less effective drag-reduction, but more effective vortex-shedding-suppression, device for finite square prisms than it is for infinite square prisms. Significant reduction in the mean drag coefficient was realized only for short prisms (of AR ≤ 5) when long splitter plates (of L/D ≥ 5) were used. A splitter plate of length L/D = 3 was able to suppress vortex shedding for all aspect ratios tested. However, for square prisms of aspect ratios AR ≤ 7, the splitter plate is a less effective vortex-shedding-suppression device when compared to its use with finite circular cylinders, i.e. longer splitter plates are needed for vortex shedding suppression with square prisms. Wake measurements showed distinct wake velocity fields for the two prisms tested. For the prism of AR = 9, a strong downwash flow in the upper part of the wake became weaker towards the ground plane. For the prism of AR = 5, the downwash remained strong close to the ground plane. With splitter plates installed, the downwash became weaker for both prisms. The splitter plate was found to narrow the wake width, especially close to the ground plane, and led to the stretching of the streamwise vortex structures in the vertical direction, and increased entrainment towards the wake centreline in the cross-stream direction.
28

Eksperimentinio akrobatinio lėktuvo skrydžio analizė / Flight analysis of experimental aerobatic airplane

Vasiljevas, Artūras 21 June 2013 (has links)
Baigiamajame magistro darbe nagrinėjamos būsimo eksperimentinio akrobatinio lėktuvo aerodinaminės savybės. Pristatomos tokio pobūdžio sritys (temos), kaip tinkamo sparno profilio parinkimas orlaiviui, reikalingo sparno formos apibrėžimas, sparno būsimos charakteristikos ir parametrų apskaičiavimas, kitų orlaivio dalių ir jų įtakos visai lėktuvo dinamikai analizavimas. Kadangi analizuojamas dvivietis eksperimentinis akrobatinis lėktuvas, tikintis geresnių rodiklių, pasirinktas palyginimo objektas  dvivietis akrobatinis mokomasis lėktuvas SU 29. Remiantis šio lėktuvo esamomis charakteristikomis ir parametrais, pateikiamos išvados ir siūlymai. / The thesis examines the aerodynamics of future experimental aerobatic aircraft. Featured in such areas (topics): proper selection of an aircraft wing profile, the required form of the wing, the wing's future performance and parameter estimation, other aircraft parts and their impact on the entire plane dynamics analysis. As analyzed double seated, experimental aerobatic plane in the hope of better indicators selected comparison object  double seated acrobatic training plane SU 29. Based on the existing aircraft characteristics and parameters, the conclusions and recommendations will be made.
29

An experimental investigation of the drag on idealised rigid, emergent vegetation and other obstacles in turbulent free-surface flows

Robertson, Francis January 2016 (has links)
Vegetation is commonly modelled as emergent arrays of rigid, circular cylinders. However, the drag coefficient (CD) of real stems or trunks is closer to that of cylinders with a square cross-section. In this thesis, vegetation has been idealised as square cylinders in laboratory experiments with a turbulence intensity of the order of 10% which is similar to that of typical river flows. These cylinders may also represent other obstacles such as architectural structures. This research has determined CD of an isolated cylinder and cylinder pairs as a function of position as well as the average drag coefficient (CDv) of larger arrays. A strain gauge was used to measure CD whilst CDv was computed with a momentum balance which was validated by strain gauge measurements for a regularly spaced array. The velocity and turbulence intensity surrounding a pair of cylinders arranged one behind the other with respect to mean flow (in tandem) were also measured with an Acoustic Doppler Velocimeter. The isolated cylinder CD was found to be 2.11 in close agreement with other researchers. Under fixed flow conditions CD for a cylinder in a pair was found to be as low as -0.40 and as high as 3.46 depending on their relative positioning. For arrays, CDv was influenced more by the distribution of cylinders than the flow conditions over the range of conditions tested. Mean values of CDv for each array were found to be between 1.52 and 3.06. This new insight therefore suggests that CDv for vegetation in bulk may actually be much higher than the typical value of 1 which is often assumed to apply in practice. If little other information is available, a crude estimate of CDv = 2 would be reasonable for many practical applications. The validity of a 2D realizable k-epsilon turbulence model for predicting the flow around square cylinders was evaluated. The model was successful in predicting CD for an isolated cylinder. In this regard the model performed as well as Large Eddy Simulations by other authors with a significant increase in computational efficiency. However, the numerical model underestimates CD of downstream cylinders in tandem pairs and overestimates velocities in their wake. This suggests it may be necessary to expand the model to three-dimensions when attempting to simulate the flow around two or more bluff obstacles with sharp edges.
30

Simulação computacional de escoamentos bidimensionais sobre turbinas eólicas de eixo vertical / Computational simulation of two-dimensional flow on vertical axis wind turbines

Faria, Geovanne Silva 31 August 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-10-01T13:57:59Z No. of bitstreams: 2 Dissertação - Geovanne Silva Faria - 2018.pdf: 4034833 bytes, checksum: 3e0011bf7d9acbf63ef8baf1b0409686 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-01T14:53:53Z (GMT) No. of bitstreams: 2 Dissertação - Geovanne Silva Faria - 2018.pdf: 4034833 bytes, checksum: 3e0011bf7d9acbf63ef8baf1b0409686 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-10-01T14:53:53Z (GMT). No. of bitstreams: 2 Dissertação - Geovanne Silva Faria - 2018.pdf: 4034833 bytes, checksum: 3e0011bf7d9acbf63ef8baf1b0409686 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-08-31 / The Brazilian energy matrix is highly focused on hydroelectric plants, that have been affected by lack of rain and long drought periods. It’s necessary to invest on alternative kinds of energy. The wind energy is an option, since Brazil presents winds with suitable velocity for energy generation, less than 5% of the Brazilian energy power grid is composed by wind turbines. The present work aims to contribute to the alternative energy generation industry, having as objective the study and analysis of flow condition over airfoils of vertical axis wind turbines. The simulation of flow over airfoils were performed using the Pseudo-Spectral Fourier method together with the Immersed Boundary method for discretization of the spatial domain, and the Runge-Kutta method of fourth order for discretization of the time domain. Both instantaneous and mean values were recorded for the lift (Cl) and drag coefficient (Cd), as well as the fields of vorticity, pressure and velocity for the flow over the airfoils with distinctive characteristics of form and angle of attack. It is concluded that with this first experiment, by refining the mesh, the values for Cl and Cd get close to the references. Posteriorly, it was imposed the movement of rotation of one vertical axis wind turbine, and simulated the flow over this turbine blades, when it was recorded both the instantaneous and mean values of the lift, drag and power coefficient, as well as the fields of vorticity, pressure and velocity for different values of velocities of turbine rotation for the airfoils NACA 0008 and NACA 4308. It was possible to conclude by analyzing the values of power coefficient (Cp), Cl and Cd obtained through simulation with the turbines that the airfoil NACA 0008 can be utilized for energy generation, since the airfoil NACA 4308 cannot be utilized in the adopted speed ranges. / A matriz energética Brasileira é altamente focada em usinas hidrelétricas, que vêm sendo afetadas pela falta de chuvas e longos períodos de estiagem. É necessário o investimento em fontes energéticas alternativas. Uma das opções é a energia eólica, pois o Brasil apresenta ventos com velocidades adequadas para geração de energia e, mesmo assim, menos de 5% da matriz energética brasileira é constituída de turbinas eólicas. O presente trabalho visa contribuir com a indústria de geração de energias alternativas tendo por objetivo o estudo e análise de escoamentos sobre aerofólios de turbinas eólicas verticais. As simulações de escoamentos sobre aerofólios foram realizadas com o método Pseudoespectral de Fourier em conjunto com o método da Fronteira Imersa para discretização do domínio espacial, e o método de Runge-Kutta de quarta ordem para discretização do domínio do tempo. Foram registrados os valores instantâneos e médios dos coeficientes de sustentação (Cl) e arrasto (Cd), bem como os campos de vorticidade, pressão e velocidades para escoamento sobre aerofólios com distintas características de forma e ângulos de ataque. Conclui-se com esse primeiro experimento, que ao se refinar a malha, os valores de Cl e Cd se aproximam das referências. Posteriormente, foi imposto o movimento de rotação de uma turbina eólica de eixo vertical, e simulado o escoamento sobre as pás dessa turbina, onde foram registrados os valores instantâneos e médios dos coeficientes de sustentação, arrasto e potência, bem como os campos de vorticidade, pressão e velocidades para diferentes valores de velocidade de rotação da turbina para os aerofólios NACA 0008 e NACA 4308. Foi possível concluir ao analisar os valores de coeficiente de potência (Cp), Cl e Cd, que o aerofólio NACA 0008 pode ser utilizado para geração de energia elétrica, já o aerofólio NACA 4308 não deve ser utilizado para a faixa de velocidades adotadas.

Page generated in 0.0334 seconds