• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 27
  • 21
  • 16
  • 16
  • 14
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

TCP6, a regulator in Arabidopsis gametophyte development and DNA damage response

Ku, Chuan-Chih January 2014 (has links)
Plants have developed intricate mechanisms to control growth in response to a variety of environmental cues, to compensate its immobility and to survive in both normal and adverse conditions. The TCP proteins are a family of plant-specific, basic helix-loop-helix (bHLH) transcription factors that involve in different aspects in plant growth and developmental control. The Arabidopsis TCP20 has been shown to involve in coordinating cell growth and proliferation, and in growth arrest in response to DNA double-stranded breaks (DSB). In this thesis, the main interest is to examine the function of Arabidopsis TCP6, which shares the highest homology with TCP20, and like TCP20, contains a putative ATM phosphorylation motif that suggests potential involvement in the ATM/ATR-mediated DSB responses. Expressional analysis including transcript measurement and reporter gene tagging demonstrated that TCP6 is expressed in flowers, in particular in the first mitotic event of pollen and ovule/embryo sac development, indicating that TCP6 potentially involves in regulating the mitotic cell cycle during gametophyte development. Yet no gametophytic or fertility-affecting mutant phenotype was observed in the tcp6 single and tcp6/tcp20 double mutants, which may be due to high functional redundancy. The tcp6/tcp20 double mutant seedlings exhibited significantly higher growth performances in true leaf growth compared to wild type when treated with gamma radiation, implying that both functional TCP6 and TCP20 are involved in response to gamma radiation-generated DSBs. The work of this thesis provides the first expressional and functional characterizations of TCP6, with the results suggesting that TCP6 and other class I TCPs play a role in regulating growth under both normal and stress conditions.
12

Intermediates of DNA double strand break repair in Escherichia coli

Mawer, Julia Sofia Pamela January 2012 (has links)
A DNA double-strand break (DSB) is a severe form of DNA damage. In fastgrowing cells, DSBs are commonly repaired by homologous recombination (HR) and in E. coli they are exclusively repaired by this mechanism. Failure to accurately repair DSBs can lead to genomic instability. Characterising the DNA intermediates formed during DSB repair by HR is key to understanding this process. A system for inducing a site-specific DSB in the E. coli chromosome has previously been described (Eykelenboom et al., 2008). Here, this system has been used to determine the nature of the intermediates of the repair. It was shown that in a Rec+ background the repair process is rapid and efficient. By contrast, in a ruvAB mutant, which is defective for the Holliday junction (HJ) migration and cleavage complex, RuvABC, HJs are accumulated on both sides of the breakpoint. Replication forks also accumulate at defined positions from the DSB, indicating that unresolved HJs are a barrier to efficient replication that is associated with the repair. This suggests that the resolution of HJs needs to occur prior to the establishment of DNA synthesis. Despite the accumulation of HJs in a ruvAB mutant, cell survival occurs when DSBs are induced for short periods, suggesting that HJs can be resolved in a RuvAB-independent manner. In contrast, the RecG helicase is essential for survival. In a recG mutant, replication forks but not HJs are detected in the region of DSB repair. In a ruvAB recG mutant, intermediates in this region are lost. These observations are consistent with a role of RecG in the stabilisation and maturation of D-loops and not the resolution of Holliday junctions. Nevertheless, an additional role for RecG in later stages of repair cannot yet be excluded. This work provides a solid framework for the further study of DSB repair in E. coli.
13

Resection of DNA double strand breaks in the germline of Caenorhabditis elegans

Yin, Yizhi 01 August 2015 (has links)
Repair of double-strand DNA breaks (DSBs) by the homologous recombination (HR) pathway results in crossovers (COs) required for a successful first meiotic division. DSB resection is the nucleic degradation of DSB ends to expose 3’ single strand DNA (ssDNA), an intermediate required for HR. To investigate genes involved in meiosis, a forward genetic screen was performed to search for novel genes or informative new mutant alleles of known genes. Mre11 is one member of the MRX/N (Mre11-Rad50-Xrs2/Nbs1) complex required for meiotic DSB formation and for resection in budding yeast. In Caenorhabditis elegans, evidence for the MRX/N’s role in DSB resection is limited. We isolated the first separation of function allele in C. elegans , mre 11(iow1), isolated from our forward genetic screen. The mre-11(iow1) mutants are specifically defective in meiotic DSB resection but not in DSB formation. The mre 11(iow1) mutants display chromosomal fragmentation and aggregation in late prophase I. Recombination intermediates and crossover formation is greatly reduced in mre 11(iow1) mutants. Irradiation induced DSBs during meiosis fail to be repaired from the early to middle prophase I in mre 11(iow1) mutants. Our data suggest that some DSBs in mre 11(iow1) mutants are repaired by the non homologous end joining (NHEJ) pathway because removing NHEJ partially suppresses some meiotic defects conferred by mre 11(iow1). In the absence of NHEJ and a functional MRX/N, meiotic DSBs are channeled to an EXO 1 dependent form of recombination repair. Overall, our analysis supports a role for MRE-11 in the resection of DSBs in early to middle meiotic prophase I and in blocking NHEJ. A reverse genetic screen and a yeast two hybrid screen were performed to search for genes with genetic and/or physical interactions with mre-11. The reverse genetic screen isolated a novel meiotic gene, nhr-2, as a partial suppressor of the meiotic defects conferred by mre-11(iow1). The yeast two hybrid screen identified kin-18 interacting with mre-11. KIN-18 is the C. elegans homolog of mammalian Thousand And One kinase (TAO) kinase. KIN-18/TAO is MAPK kinase kinase whose meiotic role was unknown. We have found that KIN-18 is essential for normal meiotic progression as kin-18 mutants exhibit accelerated meiotic recombination, ectopic germ cell differentiation, and enhanced levels of germline apoptosis. In C.elegans MPK-1 activation in late pachytene is required for physiological apoptosis (nuclei removed by apoptosis serve as nursing cells for oocytes) and oocyte differentiation. The kin-18 mutants also showed absence of MPK-1 activation and aberrant MPK-1 activation that includes ectopic activation in the wrong regions in the germline or more than one time of activation. The progression defects in kin-18 mutants are suppressed by inhibiting an upstream activator, KSR-2, of the canonical MPK-1 signaling. Our data suggest KIN-18 affects meiotic progression by modulating the timing of MPK-1 activation. This regulation ensures the proper timing of recombination and normal apoptosis, which is required for the formation of functional oocytes. Meiosis is a conserved process; revealing that KIN-18 is a novel regulator of meiotic progression in C. elegans will motivate hypothesis for TAO kinase’s role in the germline development in higher eukaryotes. Meiosis is a crucial for sexually reproducing organisms to maintain ploidy level from one generation to the next. Accurate chromosome segregation in the meiosis requires meiotic recombination between homologous chromosomes. Failure in recombination can lead to abnormal segregation of chromosomes in meiosis, which leads to aneuploidy. Anueploidy is a leading cause of miscarriages and attributes to chromosomal related birth defects. Meiotic recombination starts with programmed DNA double strand breaks (DSBs), followed by repair of these DSBs by homologous recombination (HR) pathway. One key step in HR is resection, a process to covert DSB ends into single strand DNA (ssDNA). To broaden our understanding of meiotic DSB resection, we used a nematode, C. elegans, as a model to investigate genes in DSB resection. We have isolated a specific mutant allele of a meiotic gene, mre-11. Our data suggest meiotic DSB resection in C. elegans requires collaboration of mre-11 and another gene exo-1; efficient resection of DSB ends is important to safeguard repair of DSB by HR against other illegitimate repair pathway. In addition, we identified a gene kin-18 by looking for genes interacting with mre-11. Characterization of kin-18 show meiotic recombination is tightly coordinated with germ cell progression. Our analysis provides significant improvement in the understanding of meiotic recombination in C. elegans. Given the high conservation of the two genes, mre-11 and kin-18, our finding may be applied to other organisms.
14

Regulation and mechanism of mating-type switching in Kluyveromyces lactis

Rajaei, Naghmeh January 2015 (has links)
Transposable elements (TEs) have had immense impact on the structure, function and evolution of eukaryotic genomes. The work in this thesis identified Kat1, a novel domesticated DNA transposase of the hAT family in the yeast Kluyveromyces lactis. Kat1 triggers a genome rearrangement that results in a switch of mating type from MATa to MATα. Furthermore, Kat1 acts on sequences that presumably are ancient remnants of a long-lost transposable element. Therefore, Kat1 provides a remarkable example of the intricate relationship between transposable elements and their hosts. We showed that Kat1 generates two DNA double strand breaks (DSBs) in MATa and that the DDE motif and several other conserved amino acid residues are important for Kat1 cleavage activity. DNA hairpins were formed on one end of the DSBs whereas the DNA between the DSBs was joined into a circle. Kat1 was transcriptionally activated by nutrient limitation through the transcription factor Mts1 and negatively regulated by translational frameshifting. In conclusion, Kat1 is a highly regulated domesticated transposase that induces sexual differentiation.  In another study, we developed an assay to measure switching rates in K. lactis and found that the switching rate was ~6x10-4 events/generation. In a genetic screen for mutations that increased mating-type switching, we found mutations in the RAS1 gene. The small GTPase Ras1 regulates cellular cyclic AMP levels and we demonstrated that Mts1 transcription is regulated by the RAS/cAMP pathway and the transcription factor Msn2. Since Ras activity is regulated by nutrient availability, these data likely explains why nutrient limitation induces mating-type switching.
15

The mechanism of DNA double-strand break (DSB) resection in human cells

Yang, Soo-Hyun 05 November 2013 (has links)
Homologous recombination (HR) repair is critical for the maintenance of genomic stability, as it is involved in the precise repair of DNA double-strand breaks (DSBs) using an intact homologous template for repair. The initiation of 5' strand resection of DNA ends is a critical determinant in this process, which commits cells to HR repair and prevents repair by non-homologous end joining (NHEJ). The human single-stranded DNA (ssDNA) binding complexes, RPA and SOSS1, are involved in regulating DSB signaling and HR repair. In this study, I demonstrate a novel function of SOSS1 in HR repair, in which SOSS1 stimulates hExo1-dependent resection. Despite its poor activity in binding duplex DNA, SOSS1 facilitates hExo1 recruitment to duplex DNA ends and promotes its activity in resection independently of MRN in vitro. MRN(X) is a highly conserved complex that is involved in the early steps of HR repair by regulating DSB resection. MRN interacts with CtIP and constitutes resection machinery that can perform limiting processing on DNA ends. In this study, I also examine the biochemical activities of MRN and CtIP in DSB resection through reconstituted in vitro assays. I show that the ATP-dependent DNA unwinding activity of MRN is responsible for overcoming Ku inhibition of hExo1- and Dna2/BLM-dependent resection activity in vitro. I propose that this unwinding step displaces Ku away from the DNA ends and facilitates the recruitment of hExo1 to the DNA ends for efficient resection. In addition, I show that CtIP can promote overcoming the inhibitory effect of Ku in resection together with MRN. Further, I demonstrate that MRN nuclease activity is required for efficient processing of covalent adducts from DNA ends in vitro, suggesting that the nucleolytic removal of covalent adducts by MRN generates free ends for hExo1- and Dna2/BLM binding. Overall, this study provides mechanistic insight into the regulation of DSB resection in human cells. / text
16

Radiation response in human cells : DNA damage formation, repair and signaling

Gustafsson, Ann-Sofie January 2015 (has links)
Ionizing radiation induces a range of different DNA lesions. In terms of mutation frequency and mammalian cell survival, the most critical of these lesions is the DNA double-strand break (DSB). DSB left unrepaired or mis-repaired may result in chromosomal aberrations that can lead to permanent genetic changes or cell death. The complexity of the DNA damage and the capacity to repair the DSB will determine the fate of the cell. This thesis focuses on the DNA damage formation, repair and signaling after irradiation of human cells. Radiation with high linear energy transfer (LET) produces clustered damaged sites in the DNA that are difficult for the cell to repair. Within these clustered sites, non-DSB lesions are formed that can be converted into a DSB and add to the damage complexity and affect DSB repair and the measurement. Heat-labile sites in DNA are converted into DSB at elevated temperatures. We show that heat-released DSB are formed post-irradiation with high-LET ions and increase the initial yield of DSB by 30%-40%, which is similar to yields induced by low-LET radiation. DNA-PKcs, a central player in non-homologous end-joining (NHEJ), the major mammalian DSB repair pathway, has been found to be both up- and downregulated in different tumor types. In Paper II we show that low levels of DNA-PKcs lead to extreme radiosensitivity but, surprisingly, had no effect on the DSB repair. However, the fraction of cells in G2/M phase increased two-fold in cells with low levels of DNA-PKcs. The study continued in Paper IV, where cells were synchronized to unmask potential roles of DNA-PKcs in specific cell cycle phases. Irradiation of DNA-PKcs suppressed cells in the G1/S phase caused a delay in cell cycle progression and an increase in accumulation of G2 cells. Further, these cells showed defects in DNA repair, where a significant amount of 53BP1 foci remained after 72 h. This further strengthens the hypothesis that DNA-PKcs has a role in regulation of mitotic progression. Several cellular signaling pathways are initiated in response to radiation. One of these downstream signaling proteins is AKT. We identified an interaction between DNA-PKcs and AKT. Knockouts of both AKT1 and AKT2 impaired DSB rejoining after radiation and low levels of DNA-PKcs increased radiosensitivity and decreased DNA repair further.
17

Genetic strategies to manipulate meiotic recombination in Arabidopsis thaliana

Diaz, Patrick Loyola January 2018 (has links)
During meiosis eukaryotes produce four haploid gametes from a single diploid parental cell. In meiotic S-phase homologous chromosomes, which were inherited from maternal and paternal parents, are replicated. Homologous chromosomes then pair and undergo reciprocal crossover, which generates new mosaics of maternal and paternal sequences. Meiosis also involves two rounds of chromosome segregation, meaning that only one copy of each chromosome is finally packaged into the resulting haploid gametes. In this work I sought to genetically engineer two elements of meiosis, in order to generate tools which may be useful for plant breeding. The first project sought to generate a second division restitution (SDR) population, where the second meiotic division is skipped. This is created by crossing an SDR mutant, omission of second division1, which produces diploid pollen due to a defective meiosis-II, to a haploid inducer line, whose chromosomes are lost from the zygote post-fertilisation. This was intended to give rise to diploid plants possessing chromosomes from just the SDR parent. Importantly, the SDR parent used was heterozygous, meaning that SDR progeny should show mostly homozygous chromosomes, but with regions of residual heterozygosity, determined by crossover locations. This project succeeded in creating a small number of plants with the predicted SDR genotype, although a range of aberrant genotypes were also observed. I present several hypotheses that could account for the observed progeny genotypes. In a second project I attempted to direct meiotic recombination using DNA double strand breaks targeted to specific sites. This project used a spo11-1 mutant, which is unable to produce the endogenous meiotic DNA DSBs that normally mature into crossovers. Instead, TALFokI nucleases (TALENs) were expressed from meiotic promoters in order to generate exogenous DSBs at sites determined by the DNA binding specificity of the TAL repeat domains. The project succeeded in transforming TALENs into spo11-1 mutants and confirming their expression. However, this was not sufficient to recover the spo11-1 mutant infertility or direct crossovers. Potential reasons for this non-complementation are discussed, as well as their implications for control of meiotic recombination in plant genomes.
18

Optimización de la razón señal a ruido de un receptor a 115 ghz para fines radioastronómicos.

Vásquez Drouilly, Cristián Claudio January 2007 (has links)
No description available.
19

Vers la compréhension des mécanismes de réparation de l'ADN chez Streptomyces : identification d'acteurs de la recombinaison / Towards the understanding of DNA repair in streptomyces : identification of DNA recombination players

Zhang, Lingli 23 September 2014 (has links)
Les cassures double brin de l’ADN sont des dommages pouvant engendrer la mort cellulaire. Deux mécanismes majeurs sont impliqués dans leur réparation chez les bactéries : la recombinaison homologue et le Non-Homologous End Joining (NHEJ). Streptomyces est une bactérie modèle pour étudier l'impact relatif des mécanismes de recombinaison sur la structure du génome et son évolution ; le chromosome est en effet caractérisé par sa linéarité, son organisation génétique compartimentée et sa plasticité génomique remarquable. L'objectif de cette recherche est d'identifier les acteurs impliqués dans les mécanismes de réparation des cassures double brin qui restent inconnus chez Streptomyces à ce jour. Concernant la recombinaison homologue, la première étape consiste en une maturation des extrémités d’ADN générées par la cassure. Cette première étape est assurée par un complexe à activité hélicase-nuclease : RecBCD (chez Escherichia coli), AddAB (chez Bacillus subtilis) ou AdnAB (chez les mycobactéries). Une analyse in silico des génomes disponibles de Streptomyces a permis d’identifier chez ces organismes, deux gènes conservés et adjacents, nommés adnA et adnB en raison de leur homologie avec les gènes adnAB récemment identifiés chez les mycobactéries. Les tentatives visant à déléter ces gènes chez Streptomyces ambofaciens et Streptomyces coelicolor ont été infructueuses. Cependant, le fait que leur délétion soit rendue possible par l’ajout d’une copie ectopique du locus sauvage nous a amené à conclure au caractère essentiel d’adnA et adnB chez Streptomyces. La trans-complémentation d’un mutant [delta]recB d’E. coli par le locus adnAB de S. ambofaciens restaure l’activité nucléase cellulaire et la survie en présence ou non d’agent génotoxique, suggérant qu’adnAB code l’homologue fonctionnel de RecBCD d’E. coli. Le rôle central d’adnAB dans la recombinaison homologue et la réplication est discuté. Le mécanisme NHEJ montre une distribution sporadique chez les bactéries et implique les deux protéines Ku et LigD. La protéine Ku se fixe sur les extrémités de l’ADN et recrute la ligase LigD. Cette dernière est une protéine multifonctionnelle présentant, outre une activité ligase, une activité polymérase et parfois une activité nucléase. L’analyse des génomes de Streptomyces a révélé un nombre variable d’homologues de ku (1-3) et d’homologues codant pour l’une ou l’autre des trois activités de LigD. Ces différents gènes définissent deux loci conservés entre espèces de Streptomyces. Chez S. ambofaciens, trois homologues de ku (nommés kuA, kuB et kuC) et deux ligases ATP-dépendantes (nommés ligC et ligD) ont été identifiés. L’exposition de souches déficientes pour ces différents gènes aux agents endommageant l’ADN (la mitomycine C, l’irradiation par faisceau d’électrons) a démontré l’implication de kuA et ligC, deux acteurs conservés, mais aussi des gènes variables kuC et ligD, dans la réparation de l’ADN. Ces résultats ouvrent de nouvelles perspectives pour comprendre le rôle du NHEJ dans l'évolution du génome et la biologie Streptomyces. / Double strand breaks (DSB) constitute the most deleterious form of DNA damage that a bacterial cell can encounter. Two major pathways can carry out DSB repair in bacteria: homologous recombination and Non-Homologous End Joining (NHEJ). Streptomyces is a model bacterium to explore the relative impact of these recombination mechanisms on genome structure and evolution; the chromosome is indeed typified by its linearity, its compartmentalized genetic organization and its remarkable genomic plasticity. The objective of this research is to identify actors involved in DSB repair mechanisms which remain mostly elusive in Streptomyces up to now. The first step of DSB repair by homologous recombination is the resection of broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB and Mycobacterium tuberculosis AdnAB. In silico analysis of Streptomyces genomes allowed to identify homologues for adnA and adnB which constitute a highly conserved locus within the genus. Attempts to disrupt these two genes were unsuccessful in Streptomyces ambofaciens as well as in Streptomyces coelicolor, unless an extra copy of adnAB was inserted in the chromosome. This indicates that AdnA and AdnB are both essential for Streptomyces growth. Complementation of an E. coli [delta]recB mutant by S. ambofaciens adnAB locus restored nuclease activity and cell survival in the presence or absence of DNA damaging agent, strongly suggesting that Streptomyces adnAB encodes a functional homologue of E. coli RecBCD. The key role of adnAB in homologous recombination and DNA replication is discussed. The NHEJ mechanism shows a sporadic distribution in bacteria and is known to involve the two proteins Ku and LigD. The Ku protein binds to the ends of the broken DNA and recruits the ATP-dependent ligase LigD which is a multifunctional protein carrying ligase, polymerase and sometimes nuclease activity. In silico analysis of Streptomyces genomes revealed a complex organization with a variable number of ku homologues (1 to 3) and of homologues encoding one of the three distinct LigD activities. These homologues define two conserved loci. S. ambofaciens possesses 3 ku (named kuA, kuB and kuC) and 2 ATP-dependent ligases (named ligC and ligD). Exposure to DNA damaging agents (mitomycin C, electron beam irradiation) of mutant strains got involved kuA and ligC, two conserved actors, but also variable genes such as kuC and ligD in DNA repair. These results open up new prospects to understand the role of NHEJ in the biology and genome evolution of Streptomyces.
20

Dekódování RDS zpráv obvodem FPGA / The RDS decoder on the FPGA

Vedra, Lukáš January 2014 (has links)
This thesis deals with demodulation, decoding RDS messages and an FM receiver in FPGA. It is the processing of data after A/D conversion of radio stereo signal. This work contains detailed theoretical knowledge of the RDS system, of the individual types of messages, their demodulation and subsequent decoding of individual services. There is theoretically analyzed in FPGA platform and implementation of RDS System and FM receiver.

Page generated in 0.033 seconds