Spelling suggestions: "subject:"dados mensurados"" "subject:"dados censura""
21 |
Modelo de regressão para dados com censura intervalar e dados de sobrevivência grupados / Regression model for interval-censored data and grouped survival dataHashimoto, Elizabeth Mie 04 February 2009 (has links)
Neste trabalho foi proposto um modelo de regressão para dados com censura intervalar utilizando a distribuição Weibull-exponenciada, que possui como característica principal a função de taxa de falha que assume diferentes formas (unimodal, forma de banheira, crescente e decrescente). O atrativo desse modelo de regressão é a sua utilização para discriminar modelos, uma vez que o mesmo possui como casos particulares os modelos de regressão Exponencial, Weibull, Exponencial-exponenciada, entre outros. Também foi estudado um modelo de regressão para dados de sobrevivência grupados na qual a abordagem é fundamentada em modelos de tempo discreto e em tabelas de vida. A estrutura de regressão representada por uma probabilidade é modelada adotando-se diferentes funções de ligação, tais como, logito, complemento log-log, log-log e probito. Em ambas as pesquisas, métodos de validação dos modelos estatísticos propostos são descritos e fundamentados na análise de sensibilidade. Para detectar observações influentes nos modelos propostos, foram utilizadas medidas de diagnóstico baseadas na deleção de casos, denominadas de influência global e medidas baseadas em pequenas perturbações nos dados ou no modelo proposto, denominada de influência local. Para verificar a qualidade de ajuste do modelo e detectar pontos discrepantes foi realizada uma análise de resíduos nos modelos propostos. Os resultados desenvolvidos foram aplicados a dois conjuntos de dados reais. / In this study, a regression model for interval-censored data were developed, using the Exponentiated- Weibull distribution, that has as main characteristic the hazard function which assumes different forms (unimodal, bathtub shape, increase, decrease). A good feature of that regression model is their use to discriminate models, that have as particular cases, the models of regression: Exponential, Weibull, Exponential-exponentiated, amongst others. Also a regression model were studied for grouped survival data in which the approach is based in models of discrete time and in life tables, the regression structure represented by a probability is modeled through the use of different link function, logit, complementary log-log, log-log or probit. In both studies, validation methods for the statistical models studied are described and based on the sensitivity analysis. To find influential observations in the studied models, diagnostic measures were used based on case deletion, denominated as global influence and measures based on small perturbations on the data or in the studied model, denominated as local influence. To verify the goodness of fitting of the model and to detect outliers it was performed residual analysis for the proposed models. The developed results were applied to two real data sets.
|
22 |
Regressão quantílica para dados censurados / Censored quantile regressionRasteiro, Louise Rossi 18 May 2017 (has links)
A regressão quantílica para dados censurados é uma extensão dos modelos de regressão quantílica que, por levar em consideração a informação das observações censuradas na modelagem, e por apresentar propriedades bastante satisfatórias, pode ser vista como uma abordagem complementar às metodologias tradicionais em Análise de Sobrevivência, com a vantagem de permitir que as conclusões inferenciais sejam tomadas facilmente em relação aos tempos de sobrevivência propriamente ditos, e não em relação à taxa de riscos ou a uma função desse tempo. Além disso, em alguns casos, pode ser vista também como metodologia alternativa aos modelos clássicos quando as suposições destes são violadas ou quando os dados são heterogêneos. Apresentam-se nesta dissertação três técnicas para modelagem com regressão quantílica para dados censurados, que se diferenciam em relação às suas suposições e forma de estimação dos parâmetros. Um estudo de simulação para comparação das três técnicas para dados com distribuição normal, Weibull e log-logística é apresentado, em que são avaliados viés, erro padrão e erro quadrático médio. São discutidas as vantagens e desvantagens de cada uma das técnicas e uma delas é aplicada a um conjunto de dados reais do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. / Censored quantile regression is an extension of quantile regression, and because it incorporates information from censored data in the modelling, and presents quite satisfactory properties, this class of models can be seen as a complementary approach to the traditional methods in Survival Analysis, with the advantage of allowing inferential conclusions to be made easily in terms of survival times rather than in terms of risk rates or as functions of survival time. Moreover, in some cases, it can also be seen as an alternative methodology to the classical models when their assumptions are violated or when modelling heterogeneity of the data. This dissertation presents three techniques for modelling censored quantile regression, which differ by assumptions and parameter estimation method. A simulation study designed with normal, Weibull and loglogistic distribution is presented to evaluate bias, standard error and mean square error. The advantages and disadvantages of each of the three techniques are then discussed and one of them is applied to a real data set from the Heart Institute of Hospital das Clínicas, University of São Paulo.
|
23 |
Regressão quantílica para dados censurados / Censored quantile regressionLouise Rossi Rasteiro 18 May 2017 (has links)
A regressão quantílica para dados censurados é uma extensão dos modelos de regressão quantílica que, por levar em consideração a informação das observações censuradas na modelagem, e por apresentar propriedades bastante satisfatórias, pode ser vista como uma abordagem complementar às metodologias tradicionais em Análise de Sobrevivência, com a vantagem de permitir que as conclusões inferenciais sejam tomadas facilmente em relação aos tempos de sobrevivência propriamente ditos, e não em relação à taxa de riscos ou a uma função desse tempo. Além disso, em alguns casos, pode ser vista também como metodologia alternativa aos modelos clássicos quando as suposições destes são violadas ou quando os dados são heterogêneos. Apresentam-se nesta dissertação três técnicas para modelagem com regressão quantílica para dados censurados, que se diferenciam em relação às suas suposições e forma de estimação dos parâmetros. Um estudo de simulação para comparação das três técnicas para dados com distribuição normal, Weibull e log-logística é apresentado, em que são avaliados viés, erro padrão e erro quadrático médio. São discutidas as vantagens e desvantagens de cada uma das técnicas e uma delas é aplicada a um conjunto de dados reais do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. / Censored quantile regression is an extension of quantile regression, and because it incorporates information from censored data in the modelling, and presents quite satisfactory properties, this class of models can be seen as a complementary approach to the traditional methods in Survival Analysis, with the advantage of allowing inferential conclusions to be made easily in terms of survival times rather than in terms of risk rates or as functions of survival time. Moreover, in some cases, it can also be seen as an alternative methodology to the classical models when their assumptions are violated or when modelling heterogeneity of the data. This dissertation presents three techniques for modelling censored quantile regression, which differ by assumptions and parameter estimation method. A simulation study designed with normal, Weibull and loglogistic distribution is presented to evaluate bias, standard error and mean square error. The advantages and disadvantages of each of the three techniques are then discussed and one of them is applied to a real data set from the Heart Institute of Hospital das Clínicas, University of São Paulo.
|
24 |
Modelo de regressão gama-G em análise de sobrevivência / Gama-G regression model in survival analysisHashimoto, Elizabeth Mie 15 March 2013 (has links)
Dados de tempo de falha são caracterizados pela presença de censuras, que são observações que não foram acompanhadas até a ocorrência de um evento de interesse. Para estudar o comportamento de dados com essa natureza, distribuições de probabilidade são utilizadas. Além disso, é comum se ter uma ou mais variáveis explicativas associadas aos tempos de falha. Dessa forma, o objetivo geral do presente trabalho é propor duas novas distribuições utilizando a função geradora de distribuições gama, no contexto de modelos de regressão em análise de sobrevivência. Essa função possui um parâmetro de forma que permite criar famílias paramétricas de distribuições que sejam flexíveis para capturar uma ampla variedade de comportamentos simétricos e assimétricos. Assim, a distribuição Weibull e a distribuição log-logística foram modificadas, dando origem a duas novas distribuições de probabilidade, denominadas de gama-Weibull e gama-log-logística, respectivamente. Consequentemente, os modelos de regressão locação-escala, de longa-duração e com efeito aleatório foram estudados, considerando as novas distribuições de probabilidade. Para cada um dos modelos propostos, foi utilizado o método da máxima verossimilhança para estimar os parâmetros e algumas medidas de diagnóstico de influência global e local foram calculadas para encontrar possíveis pontos influentes. No entanto, os resíduos foram propostos apenas para os modelos locação-escala para dados com censura à direita e para dados com censura intervalar, bem um estudo de simulação para verificar a distribuição empírica dos resíduos. Outra questão explorada é a introdução dos modelos: gama-Weibull inflacionado de zeros e gama-log-logística inflacionado de zeros, para analisar dados de produção de óleo de copaíba. Por fim, diferentes conjunto de dados foram utilizados para ilustrar a aplicação de cada um dos modelos propostos. / Failure time data are characterized by the presence of censoring, which are observations that were not followed up until the occurrence of an event of interest. To study the behavior of the data of that nature, probability distributions are used. Furthermore, it is common to have one or more explanatory variables associated to failure times. Thus, the goal of this work is given to the generating of gamma distributions function in the context of regression models in survival analysis. This function has a shape parameter that allows create parametric families of distributions that are flexible to capture a wide variety of symmetrical and asymmetrical behaviors. Therefore, through the generating of gamma distributions function, the Weibull distribution and log-logistic distribution were modified to give two new probability distributions: gamma-Weibull and gammalog-logistic. Additionally, location-scale regression models, long-term models and models with random effects were also studied, considering the new distributions. For each of the proposed models, we used the maximum likelihood method to estimate the parameters and some diagnostic measures of global and local influence were calculated for possible influential points. However, residuals have been proposed for data with right censoring and interval-censored data and a simulation study to verify the empirical distribution of the residuals. Another issue explored is the introduction of models: gamma-Weibull inflated zeros and gamma-log-logistic inflated zeros, to analyze production data copaiba oil. Finally, different data set are used to illustrate the application of each of the models.
|
25 |
Modelagem de dados contínuos censurados, inflacionados de zeros / Modeling censored continous, zero inflatedJaneiro, Vanderly 16 July 2010 (has links)
Muitos equipamentos utilizados para quantificar substâncias, como toxinas em alimentos, freqüentemente apresentam deficiências para quantificar quantidades baixas. Em tais casos, geralmente indicam a ausência da substância quando esta existe, mas está abaixo de um valor pequeno \'ksi\' predeterminado, produzindo valores iguais a zero não necessariamente verdadeiros. Em outros casos, detectam a presença da substância, mas são incapazes de quantificá-la quando a quantidade da substância está entre \'ksai\' e um valor limiar \'tau\', conhecidos. Por outro lado, quantidades acima desse valor limiar são quantificadas de forma contínua, dando origem a uma variável aleatória contínua X cujo domínio pode ser escrito como a união dos intervalos, [ómicron, \"ksai\'), [\"ksai\', \'tau\' ] e (\'tau\', ?), sendo comum o excesso de valores iguais a zero. Neste trabalho, são propostos modelos que possibilitam discriminar a probabilidade de zeros verdadeiros, como o modelo de mistura com dois componentes, sendo um degenerado em zero e outro com distribuição contínua, sendo aqui consideradas as distribuições: exponencial, de Weibull e gama. Em seguida, para cada modelo, foram observadas suas características, propostos procedimentos para estimação de seus parâmetros e avaliados seus potenciais de ajuste por meio de métodos de simulação. Finalmente, a metodologia desenvolvida foi ilustrada por meio da modelagem de medidas de contaminação com aflatoxina B1, observadas em grãos de milho, de três subamostras de um lote de milho, analisados no Laboratório de Micotoxinas do Departamento de Agroindústria, Alimentos e Nutrição da ESALQ/USP. Como conclusões, na maioria dos casos, as simulações indicaram eficiência dos métodos propostos para as estimações dos parâmetros dos modelos, principalmente para a estimativa do parâmetro \'delta\' e do valor esperado, \'Epsilon\' (Y). A modelagem das medidas de aflatoxina, por sua vez, mostrou que os modelos propostos são adequados aos dados reais, sendo que o modelo de mistura com distribuição de Weibull, entretanto, ajustou-se melhor aos dados. / Much equipment used to quantify substances, such as toxins in foods, is unable to measure low amounts. In cases where the substance exists, but in an amount below a small fixed value \'ksi\' , the equipment usually indicates that the substance is not present, producing values equal to zero. In cases where the quantity is between \'\'ksi\' and a known threshold value \'tau\', it detects the presence of the substance but is unable to measure the amount. When the substance exists in amounts above the threshold value ?, it is measure continuously, giving rise to a continuous random variable X whose domain can be written as the union of intervals, [ómicron, \"ksai\'), [\"ksai\', \'tau\' ] and (\'tau\', ?), This random variable commonly has an excess of zero values. In this work we propose models that can detect the probability of true zero, such as the mixture model with two components, one being degenerate at zero and the other with continuous distribution, where we considered the distributions: exponential, Weibull and gamma. Then, for each model, its characteristics were observed, procedures for estimating its parameters were proposed and its potential for adjustment by simulation methods was evaluated. Finally, the methodology was illustrated by modeling measures of contamination with aflatoxin B1, detected in grains of corn from three sub-samples of a batch of corn analyzed at the laboratory of of Mycotoxins, Department of Agribusiness, Food and Nutrition ESALQ/USP. In conclusion, in the majority of cases the simulations indicated that the proposed methods are efficient in estimating the parameters of the models, in particular for estimating the parameter ? and the expected value, E(Y). The modeling of measures of aflatoxin, in turn, showed that the proposed models are appropriate for the actual data, however the mixture model with a Weibull distribution fits the data best.
|
26 |
Uma sistemática para utilização de dados censurados de garantia para obtenção da confiabilidade automotiva /Zappa, Eugênio January 2019 (has links)
Orientador: Messias Borges Silva / Resumo: Com um mercado cada vez mais veloz, competitivo e com consumidores mais exigentes que não toleram falhas de produtos, que são amparados por legislações de proteção e defesa do consumidor, as empresas necessitam se esforçar no aprimoramento da qualidade de seus produtos. Entretanto, mesmo com a aplicação de tecnologias no desenvolvimento e fabricação de produtos, as falhas ainda acontecem. Para que um produto possa desempenhar sua função sem falhas num determinado tempo desejável, nas mais diversas condições reais as quais são submetidos, deve-se conhecer e aumentar a sua confiabilidade. Embora os dados de garantia que as empresas possuam dos seus produtos sejam fontes de informações valiosas para a obtenção da confiabilidade de um produto, estes dados ainda são insuficientes, imprecisos ou incompletos para uso direto, sendo necessário o uso de métodos apropriados ainda não muito disseminados. Este trabalho visa aplicar o método de censura por taxa de uso que viabiliza o uso de dados de garantia em análises mais precisas de confiabilidade para que as empresas possam aprimorar os seus produtos. Por meio de uma revisão da literatura e com o uso de dados de garantia, verificou-se a viabilidade da aplicação do método proposto. Com comprovação estatística, o método proposto de modelagem dos dados de garantia atingiu os resultados do estudo de referência adotado. Conclui-se que o método proposto com o objetivo de conhecer com precisão a confiabilidade do produto é aplicável e não ex... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: With an ever faster, more competitive market, and more demanding consumers who cannot tolerate product failures that are backed by consumer protection and protection laws, companies need to strive to improve the quality of their products. However, even with the application of technologies in product development and manufacturing, failures still occur. For a product to be able to perform its function without fail in a certain desirable time, under the most diverse real conditions to which it is submitted, its reliability must be known and increased. Although the assurance data that companies have of their products is a valuable source of information for the reliability of a product, this data is still insufficient, inaccurate or incomplete for direct use, and appropriate methods not yet widely disseminated are required. . This work aims to apply the usage rate censored method that enables the use of warranty data in more accurate reliability analyzes so that companies can improve their products. Through a literature review and the use of guarantee data, the feasibility of applying the proposed method was verified. With statistical proof, the proposed guarantee data modeling method reached the results of the adopted reference study. It is concluded that the proposed method with the objective of knowing precisely the product reliability is applicable and does not require specialized reliability software for its execution. Therefore, its application can contribute to the developm... (Complete abstract click electronic access below) / Mestre
|
27 |
[en] MULTIPLE IMPUTATION IN MULTIVARIATE NORMAL DATA VIA A EM TYPE ALGORITHM / [pt] UM ALGORITMO - EM - PARA IMPUTAÇÃO MÚLTIPLA DE DADOS CENSURADOSFABIANO SALDANHA GOMES DE OLIVEIRA 05 July 2002 (has links)
[pt] Construímos um algoritmo tipo EM para estimar os parâmetros
por máxima verossimilhança. Os valores imputados são
calculados pela média condicional sujeito a ser
maior (ou menor) do que o valor observado. Como a estimação
é por máxima verossimilhança, a matriz de informação
permite o cálculo de intervalos de confiança para
os parâmetros e para os valores imputados. Fizemos
experiência com dados simulados e há também um estudo de
dados reais (onde na verdade a hipótese de normalidade não
se aplica). / [en] An EM algorithm was developed to parameter estimation of a
multivariate truncate normal distribution. The multiple
imputation is evaluated by the conditional expectation
becoming the estimated values greater or lower than the
observed value. The information matrix gives the confident
interval to the parameter and values estimations.
The proposed algorithm was tested with simulated and real
data (where the normality is not followed).
|
28 |
Uma nova abordagem para análise de dependência bivariadaMarchi, Vitor Alex Alves de 23 April 2010 (has links)
Made available in DSpace on 2016-06-02T20:06:04Z (GMT). No. of bitstreams: 1
3023.pdf: 2559668 bytes, checksum: 9cf8ca3c2627a6f2d69856b231e8a0a4 (MD5)
Previous issue date: 2010-04-23 / Financiadora de Estudos e Projetos / In this dissertation we describe and implement procedures for nonparametric estimation of copulas and Sibuya function, and also procedures for bivariate analysis of dependence based on the behavior of their contours plot. Besisdes, we describe and implement the chiplot procedure and as well as a procedure for analising bivariate dependence in presence of censoring in the sample. Particularly, we propose a way to use it in a local correlation analysis. The performance of the proposed procedures are illustrated and evaluated in cases of very simple correlation, but also in a more complex correlation schemes. / Nesta dissertação descrevemos e implementamos procedimentos para estimação paramétrica da cópula e da função de Sibuya, e também procedimentos para análise de dependência bivariada, baseados no comportamento das suas curvas de nível. Também, descrevemos e implementamos o procedimento chi-plot e um procedimento para a análise de dependência bivariada com presença de censura na amostra. Particularmente, propomos formas de usá-los em análise de correlação local. O desempenho dos procedimentos propostos são ilustrados e avaliados em casos de estruturas de correlação simples, mas também em esquemas de correlação mais complexa.
|
29 |
Modelos de regressão com e sem fração de cura para dados bivariados em análise de sobrevivência / Models with and without fraction of cure for bivariate data in survival analysisJuliana Betini Fachini 19 August 2011 (has links)
Neste trabalho são reunidos diferentes modelos e técnicas para representar situações experimentais ou observacionais de análise de sobrevivência. Para modelar respostas bivariadas e covariáveis foi proposto o modelo de regressão Kumaraswamy-Weibull bivariado. A presen»ca de indivíduos curados foi considerada sob duas diferentes abordagens, originando o modelo de regressão com fração de cura para dados bivariados por meio de cópulas e o modelo de regressão log-linear bivariado com fração de cura. Os parâmetros dos modelos foram esti- mados pelo método de máxima verossimilhança sujeito a restriçãoo nos parâmetros por meio da função barreira adaptada. Adaptou-se uma análise de sensibilidade de forma a considerar as metodologias de Influência Global, Influência Local e Influência Local Total para verificar vários aspectos que envolvem a formulação e ajuste dos modelos propostos. Utilizou-se um conjunto de dados de insuficiência renal e retinopatia diabética são utilizados para exemplificar a aplicação dos modelos propostos. / This work brought together di®erent models and techniques to represent expe- rimental or observational situations in survival analysis. To model bivariate responses and covariates was proposed Kumaraswamy Weibull bivariate regression model. The presence of cured individuals was considered under two di®erent approaches originating the regression model with a cured fraction for bivariate data through copulas and the log-linear bivariate regression model with cured fraction. The parameters of the models were estimated by ma- ximum likelihood method subject to the restriction on the parameters through the adapted barrier function. A sensitivity analysis was adapted considering the methodologies of Global In°uence, Local In°uence and Total Local In°uence to check various aspects of the formulation and adjustment of the models proposed. Data set of renal failure and diabetic retinopathy are used to exemplify the application of the proposed models.
|
30 |
Modelos com sobreviventes de longa duração paramétricos e semi-paramétricos aplicados a um ensaio clínico aleatorizado / Parametric and semiparametric long-term survival models applied to a randomized clinical trialItalo Marcus da Mota Frazão 14 December 2012 (has links)
Diversos modelos têm sido propostos na literatura com o objetivo de analisar dados de sobrevivência em que a população sob estudo é assumida ser uma mistura de indivíduos suscetíveis (em risco) e não suscetíveis a um específico evento de interesse. Tais modelos são usualmente denominados modelos com sobreviventes de longa duração ou modelos com fração de cura. Neste trabalho, diversos desses modelos (nos contextos paramétrico e semi-paramétrico) foram considerados para analisar os dados de um ensaio clínico aleatorizado conduzido com o objetivo de comparar três estratégias terapêuticas (cirurgia, angioplastia e medicamentoso) utilizadas no tratamento de pacientes com doença coronariana multiarterial. Em todos os modelos, as funções de ligação logito e complemento log-log foram utilizadas para modelar a proporção de sobreviventes de longa duração (indivíduos não suscetíveis). Quanto à função de sobrevivência dos indivíduos suscetíveis, foram utilizados os modelos de Weibull e de Cox. Covariáveis foram consideradas tanto na proporção de sobreviventes de longa duração quanto na função de sobrevivência dos indivíduos suscetíveis. De modo geral, os modelos considerados se mostraram adequados para analisar os dados do ensaio clínico aleatorizado, indicando a cirurgia como a estratégia terapêutica mais eficiente. Indicaram também, que as covariáveis idade, hipertensão e diabetes mellitus exercem influência na ocorrência do óbito cardíaco, mas não no tempo até a ocorrência deste óbito nos pacientes suscetíveis. / Several models have been proposed in the literature with the aim of analyzing survival data when the population under study is assumed to be a mixture of susceptible (at risk) and not susceptible individuals to a specific event of interest. Such models are usually called long-term survivors models or cure rate models. In this work, several of these models (under both parametric and semi-parametric approaches) were considered to analyze the data from a randomized clinical trial conducted in order to compare three therapeutic strategies (surgery, angioplasty and medicine) used in the treatment of patients with multivessel coronary artery disease. For all models the logit and complementary log-log link functions were used to model the proportion of long-term survivors (not susceptible individuals). In regards to the survival function of the susceptible individuals, the Weibull and Cox models were used. Covariates were considered both in the proportion of longterm survivors and in the survival function of the susceptible individuals. Overall, the models considered were suitable for analyzing the data from the randomized clinical trial indicating surgery as the most effective therapeutic strategy. They also indicated that the covariates age, hypertension and diabetes mellitus exhibit influence on the occurrence of cardiac death, but not on the time to the occurrence of this death in susceptible patients.
|
Page generated in 0.0817 seconds