Spelling suggestions: "subject:"dados discreto"" "subject:"dados discrete""
1 |
Modelos para dados de contagem com superdispersão: uma aplicação em um experimento agronômico / Models for count data with overdispersion: application in an agronomic experimentBatista, Douglas Toledo 26 June 2015 (has links)
O modelo de referência para dados de contagem é o modelo de Poisson. A principal característica do modelo de Poisson é a pressuposição de que a média e a variância são iguais. No entanto, essa relação de média-variância nem sempre ocorre em dados observacionais. Muitas vezes, a variância observada nos dados é maior do que a variância esperada, fenômeno este conhecido como superdispersão. O objetivo deste trabalho constitui-se na aplicação de modelos lineares generalizados, a fim de selecionar um modelo adequado para acomodar de forma satisfatória a superdispersão presente em dados de contagem. Os dados provêm de um experimento que objetivava avaliar e caracterizar os parâmetros envolvidos no florescimento de plantas adultas da laranjeira variedade \"x11\", enxertadas nos limoeiros das variedades \"Cravo\" e \"Swingle\". Primeiramente ajustou-se o modelo de Poisson com função de ligação canônica. Por meio da deviance, estatística X2 de Pearson e do gráfico half-normal plot observou-se forte evidência de superdispersão. Utilizou-se, então, como modelos alternativos ao Poisson, os modelos Binomial Negativo e Quase-Poisson. Verificou que o modelo Quase-Poisson foi o que melhor se ajustou aos dados, permitindo fazer inferências mais precisas e interpretações práticas para os parâmetros do modelo. / The reference model for count data is the Poisson model. The main feature of Poisson model is the assumption that mean and variance are equal. However, this mean-variance relationship rarely occurs in observational data. Often, the observed variance is greater than the expected variance, a phenomenon known as overdispersion. The aim of this work is the application of generalized linear models, in order to select an appropriated model to satisfactorily accommodate the overdispersion present in the data. The data come from an experiment that aimed to evaluate and characterize the parameters involved in the flowering of orange adult plants of the variety \"x11\" grafted on \"Cravo\" and \"Swingle\". First, the data were submitted to adjust by Poisson model with canonical link function. Using deviance, generalized Pearson chi-squared statistic and half-normal plots, it was possible to notice strong evidence of overdispersion. Thus, alternative models to Poisson were used such as the negative binomial and Quasi-Poisson models. The Quasi-Poisson model presented the best fit to the data, allowing more accurate inferences and practices interpretations for the parameters.
|
2 |
Modelos para dados de contagem com superdispersão: uma aplicação em um experimento agronômico / Models for count data with overdispersion: application in an agronomic experimentDouglas Toledo Batista 26 June 2015 (has links)
O modelo de referência para dados de contagem é o modelo de Poisson. A principal característica do modelo de Poisson é a pressuposição de que a média e a variância são iguais. No entanto, essa relação de média-variância nem sempre ocorre em dados observacionais. Muitas vezes, a variância observada nos dados é maior do que a variância esperada, fenômeno este conhecido como superdispersão. O objetivo deste trabalho constitui-se na aplicação de modelos lineares generalizados, a fim de selecionar um modelo adequado para acomodar de forma satisfatória a superdispersão presente em dados de contagem. Os dados provêm de um experimento que objetivava avaliar e caracterizar os parâmetros envolvidos no florescimento de plantas adultas da laranjeira variedade \"x11\", enxertadas nos limoeiros das variedades \"Cravo\" e \"Swingle\". Primeiramente ajustou-se o modelo de Poisson com função de ligação canônica. Por meio da deviance, estatística X2 de Pearson e do gráfico half-normal plot observou-se forte evidência de superdispersão. Utilizou-se, então, como modelos alternativos ao Poisson, os modelos Binomial Negativo e Quase-Poisson. Verificou que o modelo Quase-Poisson foi o que melhor se ajustou aos dados, permitindo fazer inferências mais precisas e interpretações práticas para os parâmetros do modelo. / The reference model for count data is the Poisson model. The main feature of Poisson model is the assumption that mean and variance are equal. However, this mean-variance relationship rarely occurs in observational data. Often, the observed variance is greater than the expected variance, a phenomenon known as overdispersion. The aim of this work is the application of generalized linear models, in order to select an appropriated model to satisfactorily accommodate the overdispersion present in the data. The data come from an experiment that aimed to evaluate and characterize the parameters involved in the flowering of orange adult plants of the variety \"x11\" grafted on \"Cravo\" and \"Swingle\". First, the data were submitted to adjust by Poisson model with canonical link function. Using deviance, generalized Pearson chi-squared statistic and half-normal plots, it was possible to notice strong evidence of overdispersion. Thus, alternative models to Poisson were used such as the negative binomial and Quasi-Poisson models. The Quasi-Poisson model presented the best fit to the data, allowing more accurate inferences and practices interpretations for the parameters.
|
3 |
Comparações de populações discretas / Comparison of discrete populationsWatanabe, Alexandre Hiroshi 19 April 2013 (has links)
Um dos principais problemas em testes de hipóteses para a homogeneidade de curvas de sobrevivência ocorre quando as taxas de falha (ou funções de intensidade) não são proporcionais. Apesar do teste de Log-rank ser o teste não paramétrico mais utilizado para se comparar duas ou mais populações sujeitas a dados censurados, este teste apresentada duas restrições. Primeiro, toda a teoria assintótica envolvida com o teste de Log-rank, tem como hipótese o fato das populações envolvidas terem distribuições contínuas ou no máximo mistas. Segundo, o teste de Log-rank não apresenta bom comportamento quando as funções intensidade cruzam. O ponto inicial para análise consiste em assumir que os dados são contínuos e neste caso processos Gaussianos apropriados podem ser utilizados para testar a hipótese de homogeneidade. Aqui, citamos o teste de Renyi e Cramér-von Mises para dados contínuos (CCVM), ver Klein e Moeschberger (1997) [15]. Apesar destes testes não paramétricos apresentar bons resultados para dados contínuos, esses podem ter problemas para dados discretos ou arredondados. Neste trabalho, fazemos um estudo simulação da estatística de Cramér von-Mises (CVM) proposto por Leão e Ohashi [16], que nos permite detectar taxas de falha não proporcionais (cruzamento das taxas de falha) sujeitas a censuras arbitrárias para dados discretos ou arredondados. Propomos também, uma modificação no teste de Log-rank clássico para dados dispostos em uma tabela de contingência. Ao aplicarmos as estatísticas propostas neste trabalho para dados discretos ou arredondados, o teste desenvolvido apresenta uma função poder melhor do que os testes usuais / One of the main problems in hypothesis testing for homogeneity of survival curves occurs when the failure rate (or intensity functions) are nonproportional. Although the Log-rank test is a nonparametric test most commonly used to compare two or more populations subject to censored data, this test presented two constraints. First, all the asymptotic theory involved with the Log-rank test, is the hypothesis that individuals and populations involved have continuous distributions or at best mixed. Second, the log-rank test does not show well when the intensity functions intersect. The starting point for the analysis is to assume that the data is continuous and in this case suitable Gaussian processes may be used to test the assumption of homogeneity. Here, we cite the Renyi test and Cramér-von Mises for continuous data (CCVM), and Moeschberger see Klein (1997) [15]. Despite these non-parametric tests show good results for continuous data, these may have trouble discrete data or rounded. In this work, we perform a simulation study of statistic Cramér-von Mises (CVM) proposed by Leão and Ohashi [16], which allows us to detect failure rates are nonproportional (crossing of failure rates) subject to censure for arbitrary data discrete or rounded. We also propose a modification of the test log-rank classic data arranged in a contingency table. By applying the statistics proposed in this paper for discrete or rounded data, developed the test shows a power function better than the usual testing
|
4 |
Comparações de populações discretas / Comparison of discrete populationsAlexandre Hiroshi Watanabe 19 April 2013 (has links)
Um dos principais problemas em testes de hipóteses para a homogeneidade de curvas de sobrevivência ocorre quando as taxas de falha (ou funções de intensidade) não são proporcionais. Apesar do teste de Log-rank ser o teste não paramétrico mais utilizado para se comparar duas ou mais populações sujeitas a dados censurados, este teste apresentada duas restrições. Primeiro, toda a teoria assintótica envolvida com o teste de Log-rank, tem como hipótese o fato das populações envolvidas terem distribuições contínuas ou no máximo mistas. Segundo, o teste de Log-rank não apresenta bom comportamento quando as funções intensidade cruzam. O ponto inicial para análise consiste em assumir que os dados são contínuos e neste caso processos Gaussianos apropriados podem ser utilizados para testar a hipótese de homogeneidade. Aqui, citamos o teste de Renyi e Cramér-von Mises para dados contínuos (CCVM), ver Klein e Moeschberger (1997) [15]. Apesar destes testes não paramétricos apresentar bons resultados para dados contínuos, esses podem ter problemas para dados discretos ou arredondados. Neste trabalho, fazemos um estudo simulação da estatística de Cramér von-Mises (CVM) proposto por Leão e Ohashi [16], que nos permite detectar taxas de falha não proporcionais (cruzamento das taxas de falha) sujeitas a censuras arbitrárias para dados discretos ou arredondados. Propomos também, uma modificação no teste de Log-rank clássico para dados dispostos em uma tabela de contingência. Ao aplicarmos as estatísticas propostas neste trabalho para dados discretos ou arredondados, o teste desenvolvido apresenta uma função poder melhor do que os testes usuais / One of the main problems in hypothesis testing for homogeneity of survival curves occurs when the failure rate (or intensity functions) are nonproportional. Although the Log-rank test is a nonparametric test most commonly used to compare two or more populations subject to censored data, this test presented two constraints. First, all the asymptotic theory involved with the Log-rank test, is the hypothesis that individuals and populations involved have continuous distributions or at best mixed. Second, the log-rank test does not show well when the intensity functions intersect. The starting point for the analysis is to assume that the data is continuous and in this case suitable Gaussian processes may be used to test the assumption of homogeneity. Here, we cite the Renyi test and Cramér-von Mises for continuous data (CCVM), and Moeschberger see Klein (1997) [15]. Despite these non-parametric tests show good results for continuous data, these may have trouble discrete data or rounded. In this work, we perform a simulation study of statistic Cramér-von Mises (CVM) proposed by Leão and Ohashi [16], which allows us to detect failure rates are nonproportional (crossing of failure rates) subject to censure for arbitrary data discrete or rounded. We also propose a modification of the test log-rank classic data arranged in a contingency table. By applying the statistics proposed in this paper for discrete or rounded data, developed the test shows a power function better than the usual testing
|
Page generated in 0.0688 seconds