• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiple-Damage State Retrofit of Steel Moment-Resisting Frames with Composite Beam Sections Using Minimal-Disturbance Arm Damper / 合成梁を有する鋼骨組における低負荷機構を用いた多段階損傷制御型耐震補強

Giuseppe, Antonio Marzano 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22704号 / 工博第4751号 / 新制||工||1743(附属図書館) / 京都大学大学院工学研究科建築学専攻 / (主査)教授 池田 芳樹, 教授 西山 峰広, 准教授 聲高 裕治 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
2

Blast Performance Quantification Strategies For Reinforced Masonry Shear Walls With Boundary Elements

El-Hashimy, Tarek January 2019 (has links)
Structural systems have been evolving in terms of material properties and construction techniques, and their levels of protection against hazardous events have been the focus of different studies. For instance, the performance of the lateral force resisting systems has been investigated extensively to ensure that such systems would provide an adequate level of strength ductility capacity when subjected to seismic loading. However, with the increased occurrence of accidental and deliberate explosion incidents globally by more than three fold from 2004 to 2012, more studies have been focusing on the performance of such systems to blast loads and the different methods to quantify the inflicted damage. Although both blast and seismic design requires structures to sustain a level of ductility to withstand the displacement demands, the distributions of such demands from seismic ground excitation and blast loading throughout the structural system are completely different. Therefore, a ductile seismic force resisting system may not necessarily be sufficient to resist a blast wave. To address this concern, North American standards ASCE 59-11, CSA S850-12 provide response limits that define the different damage states that components may exhibit prior to collapse. Over the past ten years, a new configuration of reinforced masonry (RM) shear walls utilizing boundary elements (BEs) at the vertical edges of the wall has been investigated as an innovative configuration that enhances the wall’s in-plane performance. As such, they are included in the North American Masonry design standards, CSA S304-14 and TMS 402-16 as an alternative means to enhance the ductility of seismic force resisting systems. However, investigations regarding the out-of-plane performance of such walls are generally scarce in literature which hindered the blast design standards from providing unique response limits that can quantify the different damage states for RM walls with BEs. This dissertation has highlighted that some relevant knowledge gaps may lead to unconservative designs. Such gaps include (a) the RM wall with BEs out-of-plane behavior and damage sequence; and more specifically, (b) the BEs influence on the wall load-displacement response; as well as, (c) the applicability of using of the current response limits originally assigned for conventional RM walls to assess RM walls with BEs. Addressing these knowledge gaps is the main motivation behind this dissertation. In this respect, this dissertation reports an experimental program, that focuses on bridging the knowledge gap pertaining to the out-of-plane performance of seismically-detailed RM shear walls with BEs, which were not designed to withstand blast loads. Meanwhile, from the analytical perspective, plastic analyses were carried out taking into account the different mechanisms that the wall may undergo until peak resistance is achieved. This approach was adopted in order to quantify the resistance function of such walls and determine the contribution of the BEs and web to the overall wall resistance. In addition, the experimental results of the tested walls were used to validate a numerical finite element model developed to compare the resistance function of RM walls with and without BEs. Afterwards, the model was further refined to capture the walls’ performance under blast loads. The pressure impulse diagrams were generated to assess the capability of the current response limits in quantifying the different damage states for walls with different design parameters. Furthermore, new response limits were proposed to account for the out-of-plane ductility capacities of different wall components. Finally, a comparison between conventional rectangular walls and their counterparts with BEs using the proposed limits was conducted in the form of pressure-impulse diagram to highlight the major differences between both wall configurations. / Thesis / Doctor of Philosophy (PhD)
3

Seismic risk assessment of the transportation network of Charleston, SC

Nilsson, Emily Michelle 01 April 2008 (has links)
The functionality of the transportation network following an earthquake event is critical for post-earthquake response and long-term recovery. The likely performance of a transportation network can be evaluated through a detailed seismic risk assessment. This paper presents an assessment of the seismic risk to the transportation network in the City of Charleston and the surrounding counties to support emergency response and the development of mitigation strategies and emergency planning efforts (such as lifeline selections). This study includes an inventory analysis of the 375 bridges in the Charleston area, and convolution of the seismic hazard with fragility curves analytically derived for classes of bridges common to this part of the country, damage-functionality relationships, and replacement cost estimates using relevant region-specific data. Using state-of-the-art tools, the distribution of potential bridge damage and functionality is evaluated for several scenario events, in order to aid in the identification of emergency routes and assess areas for investment in retrofit. Additionally, a sensitivity study is conducted to determine the criticality of a few of the different input models. Initial estimates of economic losses are assessed and preliminary recommendations for prioritizing retrofit are presented.

Page generated in 0.0724 seconds