• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atratores para equações da onda amortecida em domínios arbitrários / Attractors for damped wave equations on an arbitrary domain

Nogueira, Ariadne 26 March 2013 (has links)
Nesse trabalho apresentamos o estudo do artigo [25] que analisa a existência de atratores globais para uma classe de equações da onda amortecida da forma \'épsilon u IND. tt\' + \'alpha\' (x) u IND. t\' + \'BETA\' (x)u - \'\\SIGMA SOBRE i, j\' \'\\PARTIAL ind. I\' (\'a IND. i j\' (x) \'PARTIAL IND. j u\') = f(x, u) , x PERTENCE A ÔMEGA\'\', t \'PERTENCE A\' [0,\'infinito\'), u (x, t) = 0, x \'PERTENCE A\' \'\\PARTIAL ÔMEGA\', t \'PERTENCE A\' [0, \'infinito\') definidas em um domínio arbitrário \'ÔMEGA\' / In this work we describe the results of the paper [25]. In [25] the authors prove existence of global attractors for the following semilinear damped wave equation \'\\épsilon u IND. t\'t + \'alpha\'(x)u IND. t\' + \'beta\' (x)u - \'\\SIGMA SOBRE i, j \'\\PARTIAL IND. i\' (\'a IND. i j\' (x) \'\\PARTIAL IND. j u\') = f (x, u), x \'IT BELONGS\' \'ÔMEGA\', t \'IT BELONGS\' [0, \'INFINITY\'), u(x,t), x \'IT BELONGS\' \'\\PARTIAL ÔMEGA\', t \'IT BELONGS\' [), \'INFINITY\'0 on an arbitrary domain \'OMEGA\'
2

Atratores para equações da onda amortecida em domínios arbitrários / Attractors for damped wave equations on an arbitrary domain

Ariadne Nogueira 26 March 2013 (has links)
Nesse trabalho apresentamos o estudo do artigo [25] que analisa a existência de atratores globais para uma classe de equações da onda amortecida da forma \'épsilon u IND. tt\' + \'alpha\' (x) u IND. t\' + \'BETA\' (x)u - \'\\SIGMA SOBRE i, j\' \'\\PARTIAL ind. I\' (\'a IND. i j\' (x) \'PARTIAL IND. j u\') = f(x, u) , x PERTENCE A ÔMEGA\'\', t \'PERTENCE A\' [0,\'infinito\'), u (x, t) = 0, x \'PERTENCE A\' \'\\PARTIAL ÔMEGA\', t \'PERTENCE A\' [0, \'infinito\') definidas em um domínio arbitrário \'ÔMEGA\' / In this work we describe the results of the paper [25]. In [25] the authors prove existence of global attractors for the following semilinear damped wave equation \'\\épsilon u IND. t\'t + \'alpha\'(x)u IND. t\' + \'beta\' (x)u - \'\\SIGMA SOBRE i, j \'\\PARTIAL IND. i\' (\'a IND. i j\' (x) \'\\PARTIAL IND. j u\') = f (x, u), x \'IT BELONGS\' \'ÔMEGA\', t \'IT BELONGS\' [0, \'INFINITY\'), u(x,t), x \'IT BELONGS\' \'\\PARTIAL ÔMEGA\', t \'IT BELONGS\' [), \'INFINITY\'0 on an arbitrary domain \'OMEGA\'
3

Semilinear Systems of Weakly Coupled Damped Waves

Mohammed Djaouti, Abdelhamid 06 August 2018 (has links)
In this thesis we study the global existence of small data solutions to the Cauchy problem for semilinear damped wave equations with an effective dissipation term, where the data are supposed to belong to different classes of regularity. We apply these results to the Cauchy problem for weakly coupled systems of semilinear effectively damped waves with respect to the defined classes of regularity for different power nonlinearities. We also presented blow-up results for semi-linear systems with weakly coupled damped waves.

Page generated in 0.1066 seconds