• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 133
  • 23
  • 9
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 205
  • 205
  • 66
  • 33
  • 25
  • 24
  • 20
  • 17
  • 16
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Suppression of Friction-Induced Oscillations through Use of High-Frequency Dither Signals

Michaux, Michael Andre 24 June 2005 (has links)
Friction-induced oscillations occur in many engineering systems, often resulting in noise, vibration, and excessive or uneven wear. This research addresses the suppression of such oscillations, especially with application to braking systems, through the use of high-frequency dither signals. Brake squeal is an annoying and elusive problem too often present in braking systems of automobiles, trucks and aircraft. In previous work, the effectiveness of high-frequency dither to eliminate squeal in an automotive disc brake assembly was demonstrated experimentally. The main features of the dither-squeal cancellation system was the application of a high frequency variation in the brake pressure force accomplished by means of a piezoelectric stack placed behind one of the brake pads. This thesis contains a theoretical and numerical treatment of the application of dither to frictional systems. Two types of systems are investigated. The first is a classic, mass-on-a-moving belt problem, which experiences friction-induced oscillations similar to those encountered in brake applications. The system is first studied using an analytical technique based on the method of averaging. It is shown that, depending on the system, friction, dither-waveform, and belt-speed parameters, dither can stabilize an unstable system. However, in some cases, dither can destabilize an initially stable system. These results are verified numerically using time integration. The second type of system analyzed in this thesis is an annular plate with a rotating frictional device. The method of multiple scales is used to predict subcritical regions of instability; the results are validated using Floquet theory. The thesis treats both tangential and normal dither, the latter being closer to the brake application. It is found that normal dither, in addition to being harder to analyze, is much less effective than tangential dither.
172

Design of High Loss Viscoelastic Composites through Micromechanical Modeling and Decision Based Materials Design

Haberman, Michael Richard 06 April 2007 (has links)
This thesis focuses on the micromechanical modeling of particulate viscoelastic composite materials in the quasi-static frequency domain to approximate macroscopic damping behavior and has two main objectives. The first objective is the development of a robust frequency dependent multiscale model. For this purpose, the self-consistent (SC) mean-field micromechanical model introduced by Cherkaoui et al [J. Eng. Mater. Technol. 116, 274-278 (1994)] is extended to include frequency dependence via the viscoelastic correspondence principal. The quasi-static model is then generalized using dilute strain concentration tensor formulation and validated by comparison with complex bounds from literature, acoustic and static experimental data, and established models. The second objective is SC model implementation as a tool for the design of high loss materials. This objective is met by integrating the SC model into a Compromise Decision Support Protocol (CDSP) to explore the microstructural design space of an automobile windshield. The integrated SC-CDSP design space exploration results definitively indicate that one microstructural variable dominates structure level acoustic isolation and rigidity: negative stiffness. The work concludes with a detailed description of the fundamental mechanisms leading to negative stiffness behavior and proposes two negative stiffness inclusion designs.
173

Advanced Models for Sliding Seismic Isolation and Applications for Typical Multi-Span Highway Bridges

Eroz, Murat 14 November 2007 (has links)
The large number of bridge collapses that have occurred in recent earthquakes has exposed the vulnerabilities in existing bridges. One of the emerging tools for protecting bridges from the damaging effects of earthquakes is the use of isolation systems. Seismic isolation is achieved via inserting flexible isolator elements into the bridge that shift the vibration period and increase energy dissipation. To date, the structural performance of bridges incorporating sliding seismic isolation is not well-understood, in part due to the lack of adequate models that can account for the complex behavior of the isolators. This study investigates and makes recommendations on the structural performance of bridges utilizing sliding type seismic isolators, based on the development of state-of-the-art analytical models. Unlike previous models, these models can account simultaneously for the variation in the normal force and friction coefficient, large deformation effects, and the coupling of the vertical and horizontal response during motion. The intention is to provide support for seismic risk mitigation and insight for the analysis and design of seismically isolated bridges by quantifying response characteristics. The level of accuracy required for isolator analytical models used in typical highway bridges are assessed. The comparative viability of the two main isolator types (i.e. sliding and elastomeric) for bridges is investigated. The influence of bridge and sliding isolator design parameters on the system s seismic response is illustrated.
174

Analysis of Bloch formalism in undamped and damped periodic structures

Farzbod, Farhad 15 November 2010 (has links)
Bloch analysis was originally developed by Felix Bloch to solve Schrödinger's equation for the electron wave function in a periodic potential field, such as that found in a pristine crystalline solid. His method has since been adapted to study elastic wave propagation in periodic structures. The absence of a rigorous mathematical analysis of the approach, as applied to periodic structures, has resulted in mistreatment of internal forces and misapplication to nonlinear media. In this thesis, we detail a mathematical basis for Bloch analysis and thereby shed important light on the proper application of the technique. We show conclusively that translational invariance is not a proper justification for invoking the existence of a "propagation constant," and that in nonlinear media this results in a flawed analysis. Next, we propose a general framework for applying Bloch analysis in damped systems and investigate the effect of damping on dispersion curves. In the context of Schrödinger's equation, damping is absent and energy is conserved. In the damped setting, application of Bloch analysis is not straight-forward and requires additional considerations in order to obtain valid results. Results are presented in which the approach is applied to example structures. These results reveal that damping may introduce wavenumber band gaps and bending of dispersion curves such that two or more temporal frequencies exist for each dispersion curve and wavenumber. We close the thesis by deriving conditions which predict the number of wavevectors at each frequency in a dispersion relation. This has important implications for the number of nearest neighbor interactions that must be included in a model in order to obtain dispersion predictions which match experiment.
175

Development of adaptive damping power take-off control for a three-body wave energy converter with numerical modeling and validation

Zhang, Zhe 09 December 2011 (has links)
The performance of the power take-off (PTO) system for a wave energy converter (WEC) depends largely on its control algorithm. This paper presents an adaptive damping control algorithm that improves power capture across a range of sea states. Validation for the numerical model was performed using data from two sources; sea trail data of a 1:7 scaled model and tank testing data from a 1:33 scaled model. The comparison between this control algorithm and other active control approaches such as linear damping is presented. Short term wave elevation forecasting methods and wave period determination methods are also discussed as requirements for this method. This research is conducted for a novel point absorber WEC, developed by Columbia Power Technologies (COLUMBIA POWER). / Graduation date: 2012
176

Tunability and sensitivity investigation of MREs in longitudinal vibration absorbers

Lerner, Anne-Marie Albanese 20 August 2008 (has links)
Broadband, variable, and random excitations are often suppressed using active vibration absorbers (AVAs). While AVAs can be effective, they also are expensive and subject to instability when the disturbance is ill defined. A state-switched absorber (SSA) can be used for these same vibration classes while reducing the expense and instability because an SSA is only allowed to be active at discrete instances. SSAs are spring-mass-damper devices in which at least one element is controllably variable. The work presented in this dissertation evaluates the properties of magnetorheological elastomers (MREs) to assess their use in SSAs as variable springs. MREs are elastomers doped with magnetically permeable material, generally iron. They are modeled as lossy springs, and have stiffness and loss factor components. Natural frequency and stiffness behavior, and their relationships to static displacement, iron content, and forcing frequency and amplitude were determined. Loss factors were found to be independent of MRE content, configuration, and static displacement. This was confirmation that MREs are in fact controllable springs. Natural frequencies changed in the presence of magnetic fields by as much as 360%. The corresponding change in static displacement could not account for this frequency change. Transient data was found by determining the length of time it took for an MRE to achieve quasi-steady state oscillation behavior when subjected to a harmonic excitation. This time was referred to as the characteristic response time. The characteristic response time correlated to the ratio of the forcing frequency to the zero-field natural frequency. When a magnetic field was turned on, the characteristic response time on average was found to be consistently longer than when the magnetic field was turned off, regardless of iron content or configuration. The difference between these two characteristic response times is caused by the particles' mechanics. To form a chain, a magnetic field must both be set up, and particles must move to join together. When a chain is broken, the magnetic field must merely be removed. However, this difference gives opportunities for future research to be conducted on controlling MREs' transient responses.
177

Degree-per-hour mode-matched micromachined silicon vibratory gyroscopes

Zaman, Mohammad Faisal 31 March 2008 (has links)
The objective of this research dissertation is to design and implement two novel micromachined silicon vibratory gyroscopes, which attempt to incorporate all the necessary attributes of sub-deg/hr noise performance requirements in a single framework: large resonant mass, high drive-mode oscillation amplitudes, large device capacitance (coupled with optimized electronics), and high-Q resonant mode-matched operation. Mode-matching leverages the high-Q (mechanical gain) of the operating modes of the gyroscope and offers significant improvements in mechanical and electronic noise floor, sensitivity, and bias stability. The first micromachined silicon vibratory gyroscope presented in this work is the resonating star gyroscope (RSG): a novel Class-II shell-type structure which utilizes degenerate flexural modes. After an iterative cycle of design optimization, an RSG prototype was implemented using a multiple-shell approach on (111) SOI substrate. Experimental data indicates sub-5 deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 30,000 at 23ºC (in vacuum). The second micromachined silicon vibratory gyroscope presented in this work is the mode-matched tuning fork gyroscope (M2-TFG): a novel Class-I tuning fork structure which utilizes in-plane non-degenerate resonant flexural modes. Operated under vacuum, the M2-TFG represents the first reported high-Q perfectly mode-matched operation in Class-I vibratory microgyroscope. Experimental results of device implemented on (100) SOI substrate demonstrates sub-deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 50,000 at 23ºC. In an effort to increase capacitive aspect ratio, a new fabrication technology was developed that involved the selective deposition of doped-polysilicon inside the capacitive sensing gaps (SPD Process). By preserving the structural composition integrity of the flexural springs, it is possible to accurately predict the operating-mode frequencies while maintaining high-Q operation. Preliminary characterization of vacuum-packaged prototypes was performed. Initial results demonstrated high-Q mode-matched operation, excellent thermal stability, and sub-deg/hr Allan variance bias instability.
178

Active vibration control of a piezoelectric laminate plate using spatial control approach /

Lee, Yong Keat. January 2005 (has links) (PDF)
Thesis (M.Eng.Sc.)--University of Adelaide, School of Mechanical Engineering, 2005. / Includes bibliographical references (leaves 131-137). Also available electronically as part of the Australian Digital Theses Program.
179

Active vibration control of a piezoelectric laminate plate using spatial control approach

Lee, Yong Keat. January 2005 (has links)
Thesis (M.Eng.Sc.)--University of Adelaide, School of Mechanical Engineering, 2005. / Title from screen page; viewed 16 Aug. 2005. Includes bibliographical references (leaves 131-137). Also available in print format.
180

An investigation into the effect of electrostatic actuation and mechanical shock on microstructures

Ibrahim, Mahmoud Ibrahim. January 2009 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009. / Includes bibliographical references.

Page generated in 0.0656 seconds