• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 105
  • 73
  • 25
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 438
  • 438
  • 95
  • 60
  • 49
  • 47
  • 46
  • 42
  • 42
  • 41
  • 39
  • 38
  • 34
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

A PC-based data acquisition system for sub-atomic physics measurements

Chabot, Daron 23 July 2008 (has links)
Modern particle physics measurements are heavily dependent upon automated data acquisition systems (DAQ) to collect and process experiment-generated information. One research group from the University of Saskatchewan utilizes a DAQ known as the Lucid data acquisition and analysis system. This thesis examines the project undertaken to upgrade the hardware and software components of Lucid. To establish the effectiveness of the system upgrades, several performance metrics were obtained including the system's dead time and input/output bandwidth.<p>Hardware upgrades to Lucid consisted of replacing its aging digitization equipment with modern, faster-converting Versa-Module Eurobus (VME) technology and replacing the instrumentation processing platform with common, PC hardware. The new processor platform is coupled to the instrumentation modules via a fiber-optic bridging-device, the sis1100/3100 from Struck Innovative Systems.<p>The software systems of Lucid were also modified to follow suit with the new hardware. Originally constructed to utilize a proprietary real-time operating system, the data acquisition application was ported to run under the freely available Real-Time Executive for Multiprocessor Systems (RTEMS). The device driver software provided with sis1100/3100 interface also had to be ported for use under the RTEMS-based system. <p>Performance measurements of the upgraded DAQ indicate that the dead time has been reduced from being on the order of milliseconds to being on the order of several tens of microseconds. This increased capability means that Lucid's users may acquire significantly more data in a shorter period of time, thereby decreasing both the statistical uncertainties and data collection duration associated with a given experiment.
192

Automation And Verification Of Ankara Wind Tunnel

Katirci, Argun 01 September 2003 (has links) (PDF)
All the operational and measurement systems of Ankara Wind Tunnel was modified to operate automatically under the control of a central computer system programmed using the Lab View programming language. A cruciform air-to-air missile with triangular canard control and a trapezoidal wing model was tested by a 35mm diameter internal balance at Mach 0.2 and data was compared with the test data of the same model&rsquo / s test that was performed at NASA Langley Research Center.
193

Mathematical Modelling of The Global Positioning System Tracking Signals

Mama, Mounchili January 2008 (has links)
Recently, there has been increasing interest within the potential user community of Global Positioning System (GPS) for high precision navigation problems such as aircraft non precision approach, river and harbor navigation, real-time or kinematic surveying. In view of more and more GPS applications, the reliability of GPS is at this issue. The Global Positioning System (GPS) is a space-based radio navigation system that provides consistent positioning, navigation, and timing services to civilian users on a continuous worldwide basis. The GPS system receiver provides exact location and time information for an unlimited number of users in all weather, day and night, anywhere in the world. The work in this thesis will mainly focuss on how to model a Mathematical expression for tracking GPS Signal using Phase Locked Loop filter receiver. Mathematical formulation of the filter are of two types: the first order and the second order loops are tested successively in order to find out a compromised on which one best provide a zero steady state error that will likely minimize noise bandwidth to tracks frequency modulated signal and returns the phase comparator characteristic to the null point. Then the Z-transform is used to build a phase-locked loop in software for digitized data. Finally, a Numerical Methods approach is developed using either MATLAB or Mathematica containing the package for Gaussian elimination to provide the exact location or the tracking of a GPS in the space for a given a coarse/acquisition (C/A) code.
194

Comparing Packet Fill Strategies in Ethernet-Based Data Acquisition Systems

Penna, Sérgio D. 10 1900 (has links)
ITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CA / Ethernet-based data acquisition systems are becoming more and more common in the Flight Test Instrumentation environment. Digitized analog sensor output and various other types of digital data is captured and inserted into Ethernet packets using a "packet fill" strategy that in general is under control of the user. This paper discuss and compares two strategies "FILL-TO-TIME" and "FILL-TO- SIZE" for the acquisition of ARINC-429 digital data bus.
195

An Application of Sync Time Division Multiplexing in Telemetry System

Lu, Chun, Yan, Yihong, Song, Jian 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / High speed real-time data transportation is most important for telemetry systems, especially for large-scale distributed systems. This paper introduces a STDM (Sync Time Division Multiplexing) network structure for data transportation between devices in telemetry systems. The data in these systems is transported through virtual channels between devices. In addition, a proper frame format is designed based on PCM format to meet the needs of synchronization and real-time transportation in large-scale distributed telemetry systems.
196

UDP Based Wireless Telemetry Network and Data Acquisition System for Rotary Application

Imay, Murat, Cranley, Nikki, Atman, Ozgur 10 1900 (has links)
This paper presents an open system architecture with wireless network centric telemetry and data acquisition over UDP/IP. This networked solution was designed and developed for iron bird and helicopter rotor applications which present a significant challenge for data acquisition and telemetry. Traditionally slip rings were used for data transfer however these result in issues with low bandwidth, electrical noise, installation complexity, and high maintenance costs. This paper describes a networked system using standardized technologies and protocols that was used for data acquisition and recording of parameters such as vibration, strain, and video on DAQ installed on the rotating part. The acquired data was transmitted in real-time via the network-centric wireless telemetry link which was synchronized with a ground-based DAQ used for real time processing of the rotor data.
197

MERGING OF FINGERPRINT SCANS OBTAINED FROM MULTIPLE CAMERAS IN 3D FINGERPRINT SCANNER SYSTEM

Boyanapally, Deepthi 01 January 2008 (has links)
Fingerprints are the most accurate and widely used biometrics for human identification due to their uniqueness, rapid and easy means of acquisition. Contact based techniques of fingerprint acquisition like traditional ink and live scan methods are not user friendly, reduce capture area and cause deformation of fingerprint features. Also, improper skin conditions and worn friction ridges lead to poor quality fingerprints. A non-contact, high resolution, high speed scanning system has been developed to acquire a 3D scan of a finger using structured light illumination technique. The 3D scanner system consists of three cameras and a projector, with each camera producing a 3D scan of the finger. By merging the 3D scans obtained from the three cameras a nail to nail fingerprint scan is obtained. However, the scans from the cameras do not merge perfectly. The main objective of this thesis is to calibrate the system well such that 3D scans obtained from the three cameras merge or align automatically. This error in merging is reduced by compensating for radial distortion present in the projector of the scanner system. The error in merging after radial distortion correction is then measured using the projector coordinates of the scanner system.
198

Design And Implementation Of Labview Based Data Acquisition And Image Reconstruction Environment For Metu-mri System

Ozsut, Murat Esref 01 October 2005 (has links) (PDF)
Data acquisition and image reconstruction tasks of METU Magnetic Resonance Imaging (MRI) System are used to be performed by a 15 year-old technology. This system is incapable of transmitting control signals simultaneously and has memory limitations. Control software is written mostly in assembly language, which is hard to modify, with very limited user interface functionality, and time consuming. In order to improve the system, a LabVIEW based data acquisition system consisting of a NI-6713 D/A card (to generate RF envelope, gradients, etc.) and a NI-6110E A/D card (to digitize echo signals) from National Instruments is programmed and integrated to the system, and a pulse sequence design, data acquisition and image reconstruction front-end is designed and implemented. Apart from that, a new method that can be used in Magnetic Resonance Current Density Imaging (MRCDI) experiments is proposed. In this method the readily built gradient coil of the MRI scanner is utilized to induce current in the imaging volume. Magnetic fields created by induced currents are measured for various amplitude levels, and it is proved that inducing current with this method is possible.
199

FPGA-based Instrumentation for Advanced Physics Experiments

Hidvégi, Attila January 2011 (has links)
Modern physical experiments often demand advanced instrumentation based on advances in  technology. This work describes four instrumentation physics projects that are based on modern, high-capacity Field-Programmable Gate Arrays, making use of their versatility, programmability, high bandwidth communication interfaces and signal processing capabilities. In the first project, a jet-finding algorithm for the ATLAS detector at the LHC experiment at CERN was developed and implemented, and different verification methods were created to validate the functionality and reliability. The experiment uses a three level trigger system, where the first level uses custom FPGA-based hardware for analysis of collision events in real-time. The second project was an advanced timing and triggering distribution system for the new European X-Ray Free Electron Laser (XFEL) facility at DESY in Hamburg. XFEL will enable scientists to study nano structures on the atomic scale. Its laser pulses will have the strongest peak power in the world with extremely short duration and a high repetition rate, which will even allow filming of chemical reactions. The timing system uses modern FPGAs to distribute high-speed signals over optical fibers and to deliver clocks and triggers with high accuracy. The third project was a new data acquisition board based on high-speed ADCs combined with high-performance FPGAs, to process data from segmented Ge-detectors in real-time. The aim was to improve system performance by greatly oversampling and filtering the analog signals to achieve greater effective resolution. Finally, an innovative solution was developed to replace an aging system used at CERN and Stockholm University to test vital electronics in the Tile Calorimeters of the ATLAS detector system. The new system is entirely based on a commercial FPGA development board, where all necessary custom communication protocols were implemented in firmware to emulate obsolete hardware. / Inom området instrumenteringsfysik bedrivs forskning och utveckling av avancerade instrument, som används inom moderna fysikexperiment. Denna avhandling beskriver fyra projekt där programmerbara kretsar (FPGA) har nyckelfunktioner för att lösa krävande instrumenteringsuppgifter. Den första projektet beskriver utveckling och implementering av en algoritm för detektering av partikelskurar efter partikelkollisioner i LHC-experimentets ATLAS-detektor. Experimentet genererar 40 miljoner händelser per sekund, som måste analyseras i real-tid med hjälp av snabba parallella algoritmer. Resultatet avgör vilka händelser som är tillräckligt intressanta för fortsatt noggrannare analys. Den andra projektet beskriver utvecklingen av ett system som distribuerar klock- och trigger-signaler över ett 3 kilometers experimentområde med extrem precision, i den nya röntgenlaseracceleratorn XFEL vid DESY i Hamburg. Vid XFEL kommer man utforska nanostrukturer och till och med filma molekylers kemiska reaktioner. I den tredje projektet beskrivs utvecklingen av ett höghastighets datainsamlingssystem, för segmenterade Ge-detektorer. Genom att översampla signalen med hög hastighet kan man uppnå en bättre noggrannhet i mätningen än vad AD-omvandlarens egna upplösning medger. Detta leder i sin tur  till förbättrade systemprestanda. Slutligen beskrivs en innovativ lösning till ett test system för den elektronik, som Stockholms universitet har levererat till ATLAS detektorn. Det nya systemet ersätter det föregående testsystemet, som är baserad på föråldrade inte längre tillgängliga komponenter. Det nya systemet är dessutom också billigare eftersom det är baserat på ett standard FPGA utvecklingskort. / ATLAS experiment of the Large Hadron Collider experiment / European X-ray Free Electron Laser
200

Implement vibration test control system, in MATLAB for National Instrument equipment

Fakharian, Fatemeh, Nafisi, Ali January 2011 (has links)
Finding non-linearity is a common application of modal testing but in this way, there is a need to control the input signal. Nowadays, commercial data acquisition software is not enough flexible in controlling the applied signals, whereas MATLAB as general software which supports National Instrument makes it possible to run modal test and control input signal via closed-loop controlling. In this work, using MATLAB commands, a modal test is run with a stepped-sine excitation and the input is controlled to achieve desired pure sinusoidal excitation which commonly is used in finding the non-linearity.

Page generated in 0.1019 seconds