Spelling suggestions: "subject:"data assimilation"" "subject:"data ssimilation""
201 |
Data assimilation and uncertainty quantification in cardiovascular biomechanics / Assimilation de données et quantification des incertitudes en biomécanique cardiovasculaireLal, Rajnesh 14 June 2017 (has links)
Les simulations numériques des écoulements sanguins cardiovasculaires peuvent combler d’importantes lacunes dans les capacités actuelles de traitement clinique. En effet, elles offrent des moyens non invasifs pour quantifier l’hémodynamique dans le cœur et les principaux vaisseaux sanguins chez les patients atteints de maladies cardiovasculaires. Ainsi, elles permettent de recouvrer les caractéristiques des écoulements sanguins qui ne peuvent pas être obtenues directement à partir de l’imagerie médicale. Dans ce sens, des simulations personnalisées utilisant des informations propres aux patients aideraient à une prévision individualisée des risques. Nous pourrions en effet, disposer des informations clés sur la progression éventuelle d’une maladie ou détecter de possibles anomalies physiologiques. Les modèles numériques peuvent fournir également des moyens pour concevoir et tester de nouveaux dispositifs médicaux et peuvent être utilisés comme outils prédictifs pour la planification de traitement chirurgical personnalisé. Ils aideront ainsi à la prise de décision clinique. Cependant, une difficulté dans cette approche est que, pour être fiables, les simulations prédictives spécifiques aux patients nécessitent une assimilation efficace de leurs données médicales. Ceci nécessite la solution d’un problème hémodynamique inverse, où les paramètres du modèle sont incertains et sont estimés à l’aide des techniques d’assimilation de données.Dans cette thèse, le problème inverse pour l’estimation des paramètres est résolu par une méthode d’assimilation de données basée sur un filtre de Kalman d’ensemble (EnKF). Connaissant les incertitudes sur les mesures, un tel filtre permet la quantification des incertitudes liées aux paramètres estimés. Un algorithme d’estimation de paramètres, basé sur un filtre de Kalman d’ensemble, est proposé dans cette thèse pour des calculs hémodynamiques spécifiques à un patient, dans un réseau artériel schématique et à partir de mesures cliniques incertaines. La méthodologie est validée à travers plusieurs scenarii in silico utilisant des données synthétiques. La performance de l’algorithme d’estimation de paramètres est également évaluée sur des données expérimentales pour plusieurs réseaux artériels et dans un cas provenant d’un banc d’essai in vitro et des données cliniques réelles d’un volontaire (cas spécifique du patient). Le but principal de cette thèse est l’analyse hémodynamique spécifique du patient dans le polygone de Willis, appelé aussi cercle artériel du cerveau. Les propriétés hémodynamiques communes, comme celles de la paroi artérielle (module de Young, épaisseur de la paroi et coefficient viscoélastique), et les paramètres des conditions aux limites (coefficients de réflexion et paramètres du modèle de Windkessel) sont estimés. Il est également démontré qu’un modèle appelé compartiment d’ordre réduit (ou modèle dimension zéro) permet une estimation simple et fiable des caractéristiques du flux sanguin dans le polygone de Willis. De plus, il est ressorti que les simulations avec les paramètres estimés capturent les formes attendues pour les ondes de pression et de débit aux emplacements prescrits par le clinicien. / Cardiovascular blood flow simulations can fill several critical gaps in current clinical capabilities. They offer non-invasive ways to quantify hemodynamics in the heart and major blood vessels for patients with cardiovascular diseases, that cannot be directly obtained from medical imaging. Patient-specific simulations (incorporating data unique to the individual) enable individualised risk prediction, provide key insights into disease progression and/or abnormal physiologic detection. They also provide means to systematically design and test new medical devices, and are used as predictive tools to surgical and personalize treatment planning and, thus aid in clinical decision-making. Patient-specific predictive simulations require effective assimilation of medical data for reliable simulated predictions. This is usually achieved by the solution of an inverse hemodynamic problem, where uncertain model parameters are estimated using the techniques for merging data and numerical models known as data assimilation methods.In this thesis, the inverse problem is solved through a data assimilation method using an ensemble Kalman filter (EnKF) for parameter estimation. By using an ensemble Kalman filter, the solution also comes with a quantification of the uncertainties for the estimated parameters. An ensemble Kalman filter-based parameter estimation algorithm is proposed for patient-specific hemodynamic computations in a schematic arterial network from uncertain clinical measurements. Several in silico scenarii (using synthetic data) are considered to investigate the efficiency of the parameter estimation algorithm using EnKF. The usefulness of the parameter estimation algorithm is also assessed using experimental data from an in vitro test rig and actual real clinical data from a volunteer (patient-specific case). The proposed algorithm is evaluated on arterial networks which include single arteries, cases of bifurcation, a simple human arterial network and a complex arterial network including the circle of Willis.The ultimate aim is to perform patient-specific hemodynamic analysis in the network of the circle of Willis. Common hemodynamic properties (parameters), like arterial wall properties (Young’s modulus, wall thickness, and viscoelastic coefficient) and terminal boundary parameters (reflection coefficient and Windkessel model parameters) are estimated as the solution to an inverse problem using time series pressure values and blood flow rate as measurements. It is also demonstrated that a proper reduced order zero-dimensional compartment model can lead to a simple and reliable estimation of blood flow features in the circle of Willis. The simulations with the estimated parameters capture target pressure or flow rate waveforms at given specific locations.
|
202 |
Reconstruction des structures magnéto-convectives solaires sous une région active, par l’utilisation conjointe d’un modèle de convection anélastique et d’une méthode d’assimilation de données.Pirot, Dorian 06 1900 (has links)
L’utilisation d’une méthode d’assimilation de données, associée à un modèle de convection anélastique, nous permet la reconstruction des structures physiques d’une partie de la zone convective située en dessous d’une région solaire active. Les résultats obtenus nous informent sur les processus d’émergence des tubes de champ magnétique au travers de la zone convective ainsi que sur les mécanismes de formation des régions actives.
Les données solaires utilisées proviennent de l’instrument MDI à bord de l’observatoire spatial SOHO et concernent principalement la région active AR9077 lors de l’ ́évènement du “jour de la Bastille”, le 14 juillet 2000. Cet évènement a conduit à l’avènement d’une éruption solaire, suivie par une importante éjection de masse coronale. Les données assimilées (magnétogrammes, cartes de températures et de vitesses verticales) couvrent une surface de 175 méga-mètres de coté acquises au niveau photosphérique.
La méthode d’assimilation de données employée est le “coup de coude direct et rétrograde”, une méthode de relaxation Newtonienne similaire à la méthode “quasi-linéaire inverse 3D”. Elle présente l’originalité de ne pas nécessiter le calcul des équations adjointes au modèle physique. Aussi, la simplicité de la méthode est un avantage numérique conséquent. Notre étude montre au travers d’un test simple l’applicabilité de cette méthode à un modèle de convection utilisé dans le cadre de l’approximation anélastique. Nous montrons ainsi l’efficacité de cette méthode et révélons son potentiel pour l’assimilation de données solaires. Afin d’assurer l’unicité mathématique de la solution obtenue nous imposons une régularisation dans tout le domaine simulé.
Nous montrons enfin que l’intérêt de la méthode employée ne se limite pas à la reconstruction des structures convectives, mais qu’elle permet également l’interpolation optimale des magnétogrammes photosphériques, voir même la prédiction de leur évolution temporelle. / We use a data assimilation technique, together with an anelastic convection model, in order to reconstruct the convective patterns below a solar active region. Our results yield information about the magnetic field emergence through the convective zone and the mechanisms of active region formation.
The solar data we used are taken from the instrument MDI on board the spatial observatory SOHO on July 2000 the 14th for the event called ”bastille day event”. This specific event leads to a solar flare followed by a coronal mass ejection. Assimilated data (magnetograms, temperature maps and vertical velocity maps) cover an area of 175 Mm × 175 Mm at photospheric level.
The data assimilation technique we used, the ”Nudging Back and Forth”, is a Newtonian re- laxation technique similar to the ”quasi linear inverse 3D”. Such a technique does not require computation of the adjoint equations. Thus, simplicity of this method is a numerical advantage. Our study shows with a simple test case the applicability of this method to a convection model treated with the anelastic approximation.
We show the efficiency of the NBF technique and we detail its potential for solar data assimi- lation. In addition, to ensure mathematical unicity of the obtained solution, a regularization has been imposed in the whole simulation domain. This is a new approach.
Finally, we show that the interest of such a technique is not limited to the reconstruction of convective patterns but that it also allows optimal interpolation of photospheric magnetograms and predictions.
|
203 |
Applications des méthodes multigrilles à l'assimilation de données en géophysique / Multigrid methods applied to data assimilation for geophysics modelsNeveu, Emilie 31 March 2011 (has links)
Depuis ces trente dernières années, les systèmes d'observation de la Terre et les modèles numériques se sont perfectionnés et complexifiés pour nous fournir toujours plus de données, réelles et numériques. Ces données, de nature très diverse, forment maintenant un ensemble conséquent d'informations précises mais hétérogènes sur les structures et la dynamique des fluides géophysiques. Dans les années 1980, des méthodes d'optimisation, capables de combiner les informations entre elles, ont permis d'estimer les paramètres des modèles numériques et d'obtenir une meilleure prévision des courants marins et atmosphériques. Ces méthodes puissantes, appelées assimilation variationnelle de données, peinent à tirer profit de la toujours plus grande complexité des informations de par le manque de puissance de calcul disponible. L'approche, que nous développons, s'intéresse à l'utilisation des méthodes multigrilles, jusque là réservées à la résolution de systèmes d'équations différentielles, pour résoudre l'assimilation haute résolution de données. Les méthodes multigrilles sont des méthodes de résolution itératives, améliorées par des corrections calculées sur des grilles de plus basses résolutions. Nous commençons par étudier dans le cas d'un modèle linéaire la robustesse de l'approche multigrille et en particulier l'effet de la correction par grille grossière. Nous dérivons ensuite les algorithmes multigrilles dans le cadre non linéaire. Les deux types d'algorithmes étudiés reposent d'une part sur la méthode de Gauss Newton multigrille et d'autre part sur une méthode sans linéarisation globale : le Full Approximation Scheme (FAS). Ceux-ci sont appliqués au problème de l'assimilation variationnelle de données dans le cadre d'une équation de Burgers 1D puis d'un modèle Shallow-water 2D. Leur comportement est analysé et comparé aux méthodes plus traditionnelles de type incrémentale ou multi-incrémentale. / For these last thirty years, earth observation and numerical models improved greatly and provide now a huge amount of accurate, yet heterogeneous, information on geophysics fluids dynamics and structures. Optimization methods from the eighties called variational data assimilation are capable of merging information from different sources. They have been used to estimate the parameters of numerical models and better forecast oceanic and atmospheric flows. Unfortunately, these powerful methods have trouble making benefit of always more complex information, suffering from the lack of available powerful calculators. The approach developed here, focuses on the use of multigrid methods, that are commonly used in the context of differential equations systems, to solve high resolution data assimilation. Multigrid methods are iterative methods improved by the use of feedback corrections evaluated on coarse resolution. First in the case of linear assimilation, we study the robustness of multigrid approach and the efficiency of the coarse grid correction step. We then apply the multigrid algorithms on a non linear 1-D Burgers equation and on a 2-D Shallow-Water model. We study two types of algorithms, the Gauss Newton Multigrid, which lays on global linearization, and the Full Approximation Scheme. Their behavior is compared to more traditional approaches as incremental and multi-incremental ones.
|
204 |
Reconstruction des structures magnéto-convectives solaires sous une région active, par l’utilisation conjointe d’un modèle de convection anélastique et d’une méthode d’assimilation de donnéesPirot, Dorian 06 1900 (has links)
No description available.
|
205 |
Méthodes numériques pour les problèmes des moindres carrés, avec application à l'assimilation de données / Numerical methods for least squares problems with application to data assimilationBergou, El Houcine 11 December 2014 (has links)
L'algorithme de Levenberg-Marquardt (LM) est parmi les algorithmes les plus populaires pour la résolution des problèmes des moindres carrés non linéaire. Motivés par la structure des problèmes de l'assimilation de données, nous considérons dans cette thèse l'extension de l'algorithme LM aux situations dans lesquelles le sous problème linéarisé, qui a la forme min||Ax - b ||^2, est résolu de façon approximative, et/ou les données sont bruitées et ne sont précises qu'avec une certaine probabilité. Sous des hypothèses appropriées, on montre que le nouvel algorithme converge presque sûrement vers un point stationnaire du premier ordre. Notre approche est appliquée à une instance dans l'assimilation de données variationnelles où les modèles stochastiques du gradient sont calculés par le lisseur de Kalman d'ensemble (EnKS). On montre la convergence dans L^p de l'EnKS vers le lisseur de Kalman, quand la taille de l'ensemble tend vers l'infini. On montre aussi la convergence de l'approche LM-EnKS, qui est une variante de l'algorithme de LM avec l'EnKS utilisé comme solveur linéaire, vers l'algorithme classique de LM ou le sous problème est résolu de façon exacte. La sensibilité de la méthode de décomposition en valeurs singulières tronquée est étudiée. Nous formulons une expression explicite pour le conditionnement de la solution des moindres carrés tronqués. Cette expression est donnée en termes de valeurs singulières de A et les coefficients de Fourier de b. / The Levenberg-Marquardt algorithm (LM) is one of the most popular algorithms for the solution of nonlinear least squares problems. Motivated by the problem structure in data assimilation, we consider in this thesis the extension of the LM algorithm to the scenarios where the linearized least squares subproblems, of the form min||Ax - b ||^2, are solved inexactly and/or the gradient model is noisy and accurate only within a certain probability. Under appropriate assumptions, we show that the modified algorithm converges globally and almost surely to a first order stationary point. Our approach is applied to an instance in variational data assimilation where stochastic models of the gradient are computed by the so-called ensemble Kalman smoother (EnKS). A convergence proof in L^p of EnKS in the limit for large ensembles to the Kalman smoother is given. We also show the convergence of LM-EnKS approach, which is a variant of the LM algorithm with EnKS as a linear solver, to the classical LM algorithm where the linearized subproblem is solved exactly. The sensitivity of the trucated sigular value decomposition method to solve the linearized subprobems is studied. We formulate an explicit expression for the condition number of the truncated least squares solution. This expression is given in terms of the singular values of A and the Fourier coefficients of b.
|
206 |
Vers l'assimilation de données estimées par radar Haute Fréquence en mer macrotidale / Towards data assimilation with High Frequency Radar currents in macrotidal seaJousset, Solène 01 July 2016 (has links)
La Mer d’Iroise est observée depuis 2006, par des radars à haute fréquence (HF) qui estiment les courants de surface. Ces mesures ont une finesse temporelle et spatiale pour permettre de capturer la dynamique fine du domaine côtier. Ce travail de thèse vise à la conception et l’application d’une méthode d’assimilation de ces données dans un modèle numérique réaliste pour optimiser le frottement sur le fond et corriger l’état du modèle afin de mieux représenter la circulation résiduelle de marée et les positions des fronts d’Ouessant en mer d’Iroise. La méthode d’assimilation de données utilisée est le Filtre de Kalman d’Ensemble dont l’originalité est l’utilisation d’une modélisation stochastique pour estimer l’erreur du modèle. Premièrement, des simulations d’ensemble ont été réalisées à partir de la perturbation de différents paramètres du modèle considérés comme sources d’erreur : le forçage météo, la rugosité de fond, la fermeture turbulente horizontale et la rugosité de surface. Ces ensembles ont été explorés en termes de dispersion et de corrélation d’ensemble. Un Lisseur de Kalman d’Ensemble a ensuite été utilisé pour optimiser la rugosité de fond (z0) à partir des données de courant de surface et d’un ensemble modèle réalisé à partir d’un z0 perturbé et spatialisé. La méthode a d’abord été testée en expérience jumelle puis avec des observations réelles. Les cartes du paramètre z0, optimisés, réalisées avec des observations réelles, ont ensuite été utilisées dans le modèle sur une autre période et les résultats ont été comparés avec des observations sur la zone. Enfin, des expériences jumelles ont été mises en place pour corriger l’état modèle. Deux méthodes ont été comparées, une prenant en compte la basse fréquence en filtrant la marée des données et du modèle pour réaliser l’analyse ; l’autre prenant en compte tout le signal. Avec ces expériences, on a tenté d’évaluer la capacité du filtre à contrôler à la fois la partie observée du vecteur d’état (courant de surface) et la partie non-observée du système (température de surface). / The Iroise Sea has been observed since 2006 by High Frequency (HF) radars, which estimate surface currents. These measurements offer high resolution and high frequency to capture the dynamics of the coastal domain. This thesis aims at designing and applying a method of assimilation of these data in a realistic numerical model to optimize the bottom friction and to correct the model state in order to improve the representation of the residual tidal circulation and the positions of the Ushant fronts in the Iroise Sea. The method of data assimilation used is the Ensemble Kalman Filter. The originality of this method is the use of a stochastic modeling to estimate the model error. First, ensemble simulations were carried out from the perturbation of various model parameters which are the model error sources: meteorological forcing, bottom friction, horizontal turbulent closure and surface roughness. These ensembles have been explored in terms of dispersion and correlation. An Ensemble Kalman smoother was used to optimize the bottom friction (z0) from the surface current data and from an ensemble produced from a perturbed and spatialized z0. The method is tested with a twin experiment and then with real observations. The optimized maps of parameter z0, produced with the real currents, were used in the model over another period and the results were compared with independent observations. Finally, twin experiments were conducted to test the model state correction. Two approaches were compared; first, only the low frequency, by filtering the tide in the data and in the model, is used to perform the analysis. The other approach takes the whole signal into account. With these experiments, we assess the filter's ability to control both the observed part of the state vector (currents) and the unobserved part of the system (Sea surface Temperature).
|
207 |
Assimilation de données d'images télédétectées en météorologie / Assimilation of image-derived bogussing observations in meteorologyMichel, Yann 17 December 2008 (has links)
L’évolution libre des fluides géostrophiques turbulents bidimensionnels fait apparaitre des tourbillons présentant une grande cohérence spatio-temporelle. Les écoulements atmosphériques tridimensionnels présentent également ce genre de structures cohérentes, notamment dans les champs de tourbillon potentiel. Certains aspects de la cyclogenèse semblent gouvernés, ou très sensibles, à la position et à l’intensité de ces anomalies. Les images des satellites géostationnaires permettent par ailleurs de visualiser les signatures de ces phénomènes, appelées intrusions sèches. Une première partie du travail adapte des outils de traitement d’image à la détection et au suivi des intrusions sèches sur les images vapeur d’eau. On utilise une approche basée sur des multi-seuillages et le suivi automatisé de structures (logiciel RDT). Le développement de caractéristiques supplémentaires s’avère nécessaire afin de sélectionner les intrusions associées à des événements dynamiques importants. L’une d’entre elles utilise l’information sur le courant-jet à partir de vents d’altitude de l’ébauche. Un deuxième volet s’applique à dégager une méthodologie de correction des structures en tourbillon potentiel à partir de ces informations. L’assimilation de données conventionnelle ne permet pas d’initialiser spécifiquement les structures. Nous décrivons les méthodes alternatives et étudions les possibilités, et limitations, d’une méthodologie basée sur l’assimilation de pseudo-observations. Cela débouche en particulier sur une version renouvelée de la relation entre vapeur d’eau et tourbillon potentiel. Les outils développés sont appliqués à la prévision de la tempête des Landes (2006). L’utilisation de données de concentration d’ozone est finalement évoquée comme une méthode alternative d’initialisation du tourbillon potentiel à la tropopause / Isolated vortices have been shown to emerge in two-dimensional and geostrophic turbulent flows. Coherent structures are apparent in three-dimensional atmospheric flows as well, and may share the property to determine the non-linear evolution and the predictability of the flow. Potential vorticity anomalies have indeed been shown to be of primary importance for cyclogenesis of mid-latitude storms. Their signature can be detected in satellite water vapour images and are known as dry intrusions. The first part of this work proceeds the tracking of dry intrusions on images. We use image processing tools based on thresholding algorithm, and develop additional filters to select relevant cells. One of this filters uses dynamical information on the jet from the background upper-level wind. We highlight the fact that conventional data assimilation does not handle coherent structures, and describe alternative procedures. We focus then on the assimilation of bogussed potential vorticity observations. This leads to a new vision of the relationship between water vapour and potential vorticity. The case study of the storms that has affected the Landes region in 2006 is then presented. We finally pinpoint ozone data as an alternative way to improve the initialization of upper-level potential vorticity
|
208 |
Assimilation de données radar satellitaires dans un modèle de métamorphisme de la neige / Assimilation of satellite radar data into a snowpack metamorphisme modelPhan, Xuan Vu 21 March 2014 (has links)
La caractérisation de la neige est un enjeu important pour la gestion des ressources en eau et pour la prévision des risques d'avalanche. L'avènement des nouveaux satellites Radar de Synthèse d'Ouverture (RSO) bande X à haute résolution permet d'acquérir des données de résolution métrique avec une répétitivité journalière. Dans ce travail, un modèle de rétrodiffusion des ondes électromagnétiques de la neige sèche est adapté à la bande X et aux fréquences plus élevées. L'algorithme d'assimilation de données 3D-VAR est ensuite implémenté pour contraindre le modèle d'évolution de la neige SURFEX/Crocus à l'aide des observations satellitaires. Enfin, l'ensemble de ces traitements sont évalué à partir de données du satellite TerraSAR-X acquises sur le glacier d'Argentière dans la vallée de Chamonix. Cette première comparaison montre le fort potentiel de l'assimilation des données RSO bande X pour la caractérisation du manteau neigeux. / Characterization of snowpack structure is an important issue for the management of water resources and the prediction of avalanche risks. New Synthetic Aperture Radar (SAR) satellites in X-band at high-resolution allow us to acquire image data with metric resolution and daily observations. In this work, an electromagnetic backscattering model applicable for dry snow is adapted for X-band and higher frequencies. The 3D-VAR data assimilation algorithm is then implemented to constrain the evolution of the snow metamorphisme model SURFEX/Crocus using satellite observations. Finally, the algorithm is evaluated using image data acquired from TerraSAR-X satellite on the Argentiere glacier in the Chamonix Valley of the French Alps. This first comparison shows the high potential of the data assimilation assimilation method using X-band SAR data for characterization of the snowpack.
|
209 |
Assimilation des données et apprentissage profond pour la prédiction de l'activité solaire à court termeTremblay, Benoit 08 1900 (has links)
Les phénomènes éruptifs du Soleil sont souvent accompagnés par l'accélération de particules chargées qui peuvent avoir des impacts significatifs sur la Terre. Toutefois, le mécanisme responsable de ces phénomènes n'est pas suffisamment bien compris pour qu’on puisse en prédire l'occurence. Les satellites et les observatoires terrestres sondent la photosphère, la chromosphère et la couronne du Soleil et sont essentiels pour l'étude de l'activité solaire. Les simulations numériques tentent de faire le pont entre la physique décrivant l'intérieur de l'étoile et de telles observations. La prochaine étape pour des simulations réalistes serait la prévision à court terme des structures à la surface du Soleil. Les travaux présentés dans cette thèse explorent comment des notions empruntées de la météorologie (e.g., l'assimilation des données) et de l'intelligence artificielle (e.g., les réseaux de neurones) pourraient être utilisées pour la prédiction à court terme de l'activité solaire dans le contexte de la météorologie spatiale. En particulier, nous présentons notre implémentation de l'assimilation des données dans un modèle magnétohydrodynamique (MHD) radiatif du Soleil calme (i.e., en l'absence d'activité magnétique) afin de prédire l'évolution de la granulation solaire durant une courte période de temps. Toutefois, ce ne sont pas toutes les variables du modèle qui peuvent être observées ou mesurées à l'aide d'instruments. Par exemple, les mesures directes des mouvements du plasma à la surface du Soleil sont limitées à la composante le long de la ligne de visée. Plusieurs algorithmes ont donc été développés afin de reconstruire la composante transverse à partir de mesures de l'intensité de la lumière ou du champ magnétique. Nous comparons les champs de vitesse inférés par différentes méthodes, dont un réseau de neurones, afin d'identifier la méthode la mieux adaptée pour générer des observations synthétiques dans une chaîne de réduction des données qui pourraient ensuite être introduites dans notre système pour l'assimilation des données. / Eruptive events of the Sun, which often occur in the context of flares, convert large amounts of magnetic energy into emission and particle acceleration that can have significant impacts on Earth's environment. However, the mechanism responsible for such phenomena is not sufficiently well understood to be able to predict their occurrence. Satellites and ground-based observatories probe the Sun's photosphere, chromosphere and corona and are key in studying solar activity. Numerical models have attempted to bridge the gap between the physics of the solar interior and such observations. The next step for realistic simulations would be to forecast the short term evolution of the Sun's photosphere. The following work explores how notions borrowed from meteorology (e.g., data assimilation) and artificial intelligence (e.g., neural networks) could be used to forecast short term solar activity for space-weather modelling purposes. More specifically, we present an implementation of data assimilation in a radiative MHD model of the Quiet Sun (i.e., in the absence of significant magnetic activity) to forecast its evolution over a short period of time. However, not all model variables are directly observable. For example, direct measurements of plasma motions at the photosphere are limited to the line-of-sight component. Multiple algorithms were consequently developed to reconstruct the transverse component from observed continuum images or magnetograms. We compare velocity fields inferred by different methods, including a neural network, to identify the method best suited to generate instantaneous synthetic observations in a data reduction pipeline that would included in our data assimilation framework.
|
210 |
[pt] ASSIMILAÇÃO DE DADOS INTEGRADA A TÉCNICAS DE TRADUÇÃO IMAGEM-IMAGEM APLICADA A MODELOS DE RESERVATÓRIOS / [en] DATA ASSIMILATION INTEGRATED WITH IMAGE-TO-IMAGE TRANSLATION NETWORKS APPLIED TO RESERVOIR MODELS.VITOR HESPANHOL CORTES 22 June 2023 (has links)
[pt] A incorporação de dados de produção a modelos de reservatórios é uma
etapa fundamental para se estimar adequadamente a recuperação de uma
jazida de petróleo e, na última década, o método ensemble smoother with
multiple data assimilation (ES-MDA) tem se destacado dentre as estratégias
disponíveis para realizar tal tarefa. Entretanto, este é um método que apresenta
melhores resultados quando os parâmetros a serem ajustados no modelo são
caracterizados por uma distribuição de probabilidades próxima à gaussiana,
apresentando um desempenho reduzido ao lidar com o ajuste de parâmetros
categóricos, como por exemplo as fácies geológicas. Uma proposta para lidar
com esse problema é recorrer a redes de aprendizado profundo, em particular
redes para tradução imagem-imagem (I2I), valendo-se da analogia existente
entre a representação matricial de imagem e a estrutura em malha das
propriedades de um modelo de reservatórios. Assim, é possível adaptar a
arquitetura de redes I2I disponíveis e treiná-las para, a partir de uma matriz
de parâmetros contínuos que serão ajustados pelo método ES-MDA (como
porosidade e permeabilidade), gerar a representação matricial do parâmetro
categórico correspondente (fácies), de forma similar à tarefa de segmentação
semântica no contexto de imagens. Portanto, o parâmetro categórico seria
atualizado de maneira indireta pelo método ES-MDA, sendo a sua reconstrução
realizada pela rede I2I. / [en] Reservoir model data assimilation is a key step to properly estimate the
final recovery of an oil field and, in the last decade, the ensemble smoother
with multiple data assimilation method (ES-MDA) has stood out among
all available strategies to perform this task. However, this method achieves
better results when model parameters are described by an approximately
Gaussian distribution and hence presents reduced performance when dealing
with categorical parameters, such as geological facies. An alternative to deal
with this issue is to adopt a deep learning based approach, particularly
using image-to-image translation (I2I) networks and taking into account
the analogy between the matrix representation of images and the reservoir
model grid properties. Thus, it is possible to adapt I2I network architectures,
training them to generate the categorical parameter (facies) from its correlated
continuous properties modified by the ES-MDA method (such as porosity and
permeability), similar to semantic segmentation tasks in an image translation
context. Therefore, the categorical parameter would be indirectly updated by
the ES-MDA method, with its reconstruction carried out by the I2I network.
|
Page generated in 0.1193 seconds