• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 57
  • 13
  • 12
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 212
  • 212
  • 75
  • 38
  • 35
  • 34
  • 34
  • 24
  • 24
  • 18
  • 18
  • 18
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Previsão de vazão usando estimativas de precipitação por satélite e assimilação de dados

Quiroz Jiménez, Karena January 2017 (has links)
Neste estudo, trata-se de avaliar fontes de precipitação baseadas em estimativas por satélite e técnicas de assimilação de dados para previsão de vazões por meio do modelo hidrológico distribuído MGB-IPH. A insuficiente representatividade espacial dos pluviômetros torna difícil a correta representação dos campos de precipitações. Por outro lado, as estimativas de satélite, embora forneçam uma descrição espacial mais consistente, são potencialmente menos acuradas. Sendo assim, procura-se utilizar métodos que combinem os dados de ambas as fontes para gerar um campo de precipitação mais consistente. Neste trabalho, implementaramse dois modelos de combinação pluviômetro-satélite, CHUVSAT e MERGEHQ, através de uma metodologia de interpolação. Por outro lado, as técnicas de assimilação de dados acoplados aos modelos de previsão hidrológica são também de interesse neste estudo, pois minimizam as incertezas associadas ao processo de calibração de parâmetros, às variáveis de estado e dados de entrada do modelo hidrológico. Para esse propósito, escolheu-se a bacia do rio Tocantins e implementou-se particularmente a técnica de assimilação de dados de tipo sequencial chamado na literatura de filtro de partículas, conjuntamente com o método de filtro Kalman por conjunto e o método de assimilação AsMGB atualmente acoplado ao modelo MGB-IPH. O estudo mostra que a precipitação combinada utilizada como dado de entrada na simulação hidrológica permitiu reproduzir adequadamente os hidrogramas observados para o período de calibração e validação. Já para o caso das vazões resultantes, durante a etapa de previsão, a precipitação combinada mostrou-se com melhor desempenho em termos estatísticos que os métodos sem combinar, sobretudo após 24 horas de antecedência. Finalmente, a técnica de assimilação de dados por filtro de partículas conseguiu absorver os erros da simulação melhorando as medidas de desempenho na etapa de previsão sendo superior ao modelo de previsão sem considerar assimilação. / The objective of this study is to evaluate precipitation sources based on satellite estimates and data assimilation techniques for prediction of flows by means of the distributed hydrological model MGB-IPH. The insufficient spatial availability of rain gauges makes difficult to represent precipitation fields appropriately. In contrast, satellite estimates, although providing a more consistent spatial description, are potentially less accurate. Thus, raingauge satellite merging methods that combine data from both sources to generate a more consistent precipitation field are used herein. For this purpose, two models namely CHUVSAT and MERGEHQ were implemented using an interpolation technique. On the other hand, data assimilation techniques coupled with hydrological forecasting models are also assessed in this study. The assimilation process minimizes the uncertainties associated with the parameter calibration procedure, variable state and hydrological input data. In this manner, the sequential data assimilation technique namely particle filter in conjunction with the Kalman filter method and the assimilation method AsMGB, which is currently coupled to the MGBIPH model, were implemented and applied to the Tocantis basin. The obtained results showed that the combined precipitation used as input data in the hydrological simulation allowed reproducing adequately the observed hydrograms for the periods of calibration and validation. In the case of the resulting flows during the forecast stage, the merging precipitation was shown to perform better in statistical terms than the uncombined methods, especially after 24 hours in advance. Finally, the data assimilation technique by particle filter was able to absorb all simulation errors, improving the performance measures in the forecasting stage, thus being superior to the forecasting model without considering assimilation.
162

Modelování globálních barotropních oceánských slapů v časové oblasti / Time-domain modelling of global barotropic ocean tides

Einšpigel, David January 2017 (has links)
Traditionally, ocean tides have been modelled in frequency domain with forcing of selected tidal constituents. It is a natural approach, however, non-linearities of ocean dynamics are implicitly neglected. An alternative approach is time-domain modelling with forcing given by the full lunisolar potential, i.e., all tidal constituents are included. This approach has been applied in several ocean tide models, however, a few challenging tasks still remain to solve, for example, the assimilation of satellite altimetry data. In this thesis, we present DEBOT, a global and time-domain barotropic ocean tide model with the full lunisolar forcing. DEBOT has been developed "from scratch". The model is based on the shallow water equations which are newly derived in geographical (spherical) coordinates. The derivation includes the boundary conditions and the Reynolds tensor in a physically consistent form. The numerical model employs finite differences in space and a generalized forward-backward scheme in time. The validity of the code is demonstrated by the tests based on integral invariants. DEBOT has two modes for ocean tide modelling: DEBOT-h, a purely hydrodynamical mode, and DEBOT-a, an assimilative mode. We introduce the assimilative scheme applicable in a time-domain model, which is an alternative to existing...
163

Solving regularized nonlinear least-squares problem in dual space with application to variational data assimilation / Résolution de problèmes des moindres carrés non-linéaires régularisés dans l'espace dual avec applications à l'assimilation de données

Gürol, Selime 14 June 2013 (has links)
Cette thèse étudie la méthode du gradient conjugué et la méthode de Lanczos pour la résolution de problèmes aux moindres carrés non-linéaires sous déterminés et régularisés par un terme de pénalisation quadratique. Ces problèmes résultent souvent d'une approche du maximum de vraisemblance, et impliquent un ensemble de m observations physiques et n inconnues estimées par régression non linéaire. Nous supposons ici que n est grand par rapport à m. Un tel cas se présente lorsque des champs tridimensionnels sont estimés à partir d'observations physiques, par exemple dans l'assimilation de données appliquée aux modèles du système terrestre. Un algorithme largement utilisé dans ce contexte est la méthode de Gauss- Newton (GN), connue dans la communauté d'assimilation de données sous le nom d'assimilation variationnelle des données quadridimensionnelles. Le procédé GN repose sur la résolution approchée d'une séquence de moindres carrés linéaires optimale dans laquelle la fonction coût non-linéaire des moindres carrés est approximée par une fonction quadratique dans le voisinage de l'itération non linéaire en cours. Cependant, il est bien connu que cette simple variante de l'algorithme de Gauss-Newton ne garantit pas une diminution monotone de la fonction coût et sa convergence n'est donc pas garantie. Cette difficulté est généralement surmontée en utilisant une recherche linéaire (Dennis and Schnabel, 1983) ou une méthode de région de confiance (Conn, Gould and Toint, 2000), qui assure la convergence globale des points critiques du premier ordre sous des hypothèses faibles. Nous considérons la seconde de ces approches dans cette thèse. En outre, compte tenu de la grande échelle de ce problème, nous proposons ici d'utiliser un algorithme de région de confiance particulier s'appuyant sur la méthode du gradient conjugué tronqué de Steihaug-Toint pour la résolution approchée du sous-problème (Conn, Gould and Toint, 2000, p. 133-139) La résolution de ce sous-problème dans un espace à n dimensions (par CG ou Lanczos) est considérée comme l'approche primale. Comme alternative, une réduction significative du coût de calcul est possible en réécrivant l'approximation quadratique dans l'espace à m dimensions associé aux observations. Ceci est important pour les applications à grande échelle telles que celles quotidiennement traitées dans les systèmes de prévisions météorologiques. Cette approche, qui effectue la minimisation de l'espace à m dimensions à l'aide CG ou de ces variantes, est considérée comme l'approche duale. La première approche proposée (Da Silva et al., 1995; Cohn et al., 1998; Courtier, 1997), connue sous le nom de Système d'analyse Statistique de l'espace Physique (PSAS) dans la communauté d'assimilation de données, commence par la minimisation de la fonction de coût duale dans l'espace de dimension m par un CG préconditionné (PCG), puis revient l'espace à n dimensions. Techniquement, l'algorithme se compose de formules de récurrence impliquant des vecteurs de taille m au lieu de vecteurs de taille n. Cependant, l'utilisation de PSAS peut être excessivement coûteuse car il a été remarqué que la fonction de coût linéaire des moindres carrés ne diminue pas monotonement au cours des itérations non-linéaires. Une autre approche duale, connue sous le nom de méthode du gradient conjugué préconditionné restreint (RPCG), a été proposée par Gratton and Tshimanga (2009). Celle-ci génère les mêmes itérations en arithmétique exacte que l'approche primale, à nouveau en utilisant la formule de récurrence impliquant des vecteurs taille m. L'intérêt principal de RPCG est qu'il en résulte une réduction significative de la mémoire utilisée et des coûts de calcul tout en conservant la propriété de convergence souhaitée, contrairement à l'algorithme PSAS. / This thesis investigates the conjugate-gradient method and the Lanczos method for the solution of under-determined nonlinear least-squares problems regularized by a quadratic penalty term. Such problems often result from a maximum likelihood approach, and involve a set of m physical observations and n unknowns that are estimated by nonlinear regression. We suppose here that n is large compared to m. These problems are encountered for instance when three-dimensional fields are estimated from physical observations, as is the case in data assimilation in Earth system models. A widely used algorithm in this context is the Gauss-Newton (GN) method, known in the data assimilation community under the name of incremental four dimensional variational data assimilation. The GN method relies on the approximate solution of a sequence of linear least-squares problems in which the nonlinear least-squares cost function is approximated by a quadratic function in the neighbourhood of the current nonlinear iterate. However, it is well known that this simple variant of the Gauss-Newton algorithm does not ensure a monotonic decrease of the cost function and that convergence is not guaranteed. Removing this difficulty is typically achieved by using a line-search (Dennis and Schnabel, 1983) or trust-region (Conn, Gould and Toint, 2000) strategy, which ensures global convergence to first order critical points under mild assumptions. We consider the second of these approaches in this thesis. Moreover, taking into consideration the large-scale nature of the problem, we propose here to use a particular trust-region algorithm relying on the Steihaug-Toint truncated conjugate-gradient method for the approximate solution of the subproblem (Conn, Gould and Toint, 2000, pp. 133-139). Solving this subproblem in the n-dimensional space (by CG or Lanczos) is referred to as the primal approach. Alternatively, a significant reduction in the computational cost is possible by rewriting the quadratic approximation in the m-dimensional space associated with the observations. This is important for large-scale applications such as those solved daily in weather prediction systems. This approach, which performs the minimization in the m-dimensional space using CG or variants thereof, is referred to as the dual approach. The first proposed dual approach (Courtier, 1997), known as the Physical-space Statistical Analysis System (PSAS) in the data assimilation community starts by solving the corresponding dual cost function in m-dimensional space by a standard preconditioned CG (PCG), and then recovers the step in n-dimensional space through multiplication by an n by m matrix. Technically, the algorithm consists of recurrence formulas involving m-vectors instead of n-vectors. However, the use of PSAS can be unduly costly as it was noticed that the linear least-squares cost function does not monotonically decrease along the nonlinear iterations when applying standard termination. Another dual approach has been proposed by Gratton and Tshimanga (2009) and is known as the Restricted Preconditioned Conjugate Gradient (RPCG) method. It generates the same iterates in exact arithmetic as those generated by the primal approach, again using recursion formula involving m-vectors. The main interest of RPCG is that it results in significant reduction of both memory and computational costs while maintaining the desired convergence property, in contrast with the PSAS algorithm. The relation between these two dual approaches and the question of deriving efficient preconditioners (Gratton, Sartenaer and Tshimanga, 2011), essential when large-scale problems are considered, was not addressed in Gratton and Tshimanga (2009).
164

Modelisation directe et inverse d'ecoulements geophysiques viscoplastiques par methodes variationnelles : Application a la glaciologie / Direct and inverse modeling of viscoplastic geophysical flows using variational methods : Application to glaciology

Martin, Nathan 10 July 2013 (has links)
Un certain nombre d’écoulements géophysiques, tels que les écoulements de glace ou de lave magmatique, impliquent le mouvement gravitaire à faible nombre de Reynolds d’un fluide viscoplastique à surface libre sur un socle rocheux. Leur modélisation fait apparaître des lois de comportement rhéologique et des descriptions de leurs intéractions avec le socle rocheux qui reposent sur des paramétrisations empiriques. Par ailleurs, l’observation systématique de ce type d’écoulements avec une grande précision est rarement possible ; les données associées à l’observation de ces écoulements, principalement des données de surface (télédétections), peuvent être peu denses, manquantes ou incertaines. Elles sont aussi le plus souvent indirectes : des paramètres inconnus comme le glissement basal ou la rhéologie sont difficilement mesurables in situ.Ce travail de thèse s’attache à la modélisation directe et inverse de ces écoulements géophysiques, particulièrement les écoulements de glace, par des méthodes variationnelles à travers la résolution du problème de Stokes pour les fluides en loi de puissance.La méthode de résolution du problème direct (Stokes non-linéaire) repose sur le principe du minimum de dissipation qui mène à un problème variationnel de type point-selle à quatre champs pour lequel on montre l’existence de solutions. La condition d’incompressibilité et la loi de comportement représentent alors des contraintes associées au problème de minimisation. La recherche des points critiques du lagrangien correspondant est réalisée à l’aide d’un algorithme de type lagrangien augmenté, discrétisé par éléments finis triangles à trois champs. Cet algorithme conduit à un important gain tant en temps de calcul qu’en utilisation mémoire par rapport aux algorithmes classiques.On s’intéresse ensuite à la modélisation numérique inverse de ces fluides à l’aide du modèle adjoint et des deux principaux outils associés : l’analyse de sensibilité et l’assimilation de données. On étudie tout d’abord la modélisation rhéologique de ces fluides à travers les deux paramètres principaux de la loi de comportement : la consistance du fluide et l’exposant rhéologique. Des analyses de sensibilité sur ces paramètres définis localement, permettent de quantifier leurs poids relatifs au sein du modèle d’écoulement, en termes de vitesses de surface. L’identification de ces grandeurs est également réalisée. L’ensemble des résultats est résumé comme une méthodologie vers une “rhéométrie virtuelle” pouvant représenter une aide solide à la mesure rhéologique.Le glissement basal, paramètre majeur dans la dynamique de la glace, est investigué selon la même approche. Les analyses de sensibilité mettent en avant une capacité à voir à travers le caractère “filtré” et non-local de la transmission de la variabilité basale vers la surface, ouvrant des perspectives vers l’utilisation des sensibilités pour la définition de lieux d’intérêt pour l’observation et la mesure. Ce glissement basal, modélisation empirique d’un processus complexe et multiéchelle, est ensuite utilisé pour la comparaison avec une méthode inverse approximative courante en glaciologie (méthode négligeant la dépendance de la viscosité à la vitesse, i.e. la non-linéarité). Le modèle adjoint, obtenu par différentiation automatique et évalué par accumulation retour, permet de définir cette approximation comme un cas limite de la méthode inverse complète. Ce formalisme mène à une généralisation du processus d’évaluation numérique de l’état adjoint, ajustable en précision et en temps de calcul en fonction de la qualité des données et du niveau de détail souhaité dans la reconstruction.L’ensemble de ces travaux est associé au développement du logiciel DassFlow-Ice de simulation directe et inverse de fluides viscoplastiques à surface libre. Ce logiciel prospectif bidimensionnel, diffusé dans la communauté glaciologique, a donné lieu au développement d’une version tridimensionnelle. / Several geophysical flows, such as ice flows or lava flows, are described by a gravity-driven low Reynolds number movement of a free surface viscoplastic fluid over a bedrock. Their modeling involves constitutive laws, typically describing their rheological behavior or interactions with their bedrock, that lean on empirical parameterizations. Otherwise, the thorough observation of this type of flows is rarely possible; data associated to the observation of these flows, mainly remote-sensed surface data, can be sparse, missing or uncertain. They are also generally indirect : unknown parameters such as the basal slipperiness or the rheology are difficult to measure on the field.This PhD work focuses on the direct and inverse modeling of these geophysical flows described by the power-law Stokes model, specifically dedicated to ice flows, using variational methods.The solution of the direct problem (Stokes non-linear) is based on the principle of minimal dissipation that leads to a variational four-field saddle-point problem for which we ensure the existence of a solution. In this context, the incompressibility condition and the constitutive rheological law represent constraints associated to the minimization problem. The critical points of the corresponding Lagrangian are determined using an augmented Lagrangian type algorithm discretized using three- field finite elements. This algorithm provides an important time and memory saving compared to classical algorithms.We then focus on the inverse numerical modeling of these fluids using the adjoint model through two main associated tools : sensitivity analysis and data assimilation. We first study the rheological modeling through the two principal input parameters (fluid consistency and rheological exponent). Sensitivity analyses with respect to these locally defined parameters allow to quantify their relative weights within the flow model, in terms of surface velocities. Identification of these parameters is also performed. The results are synthetized as a methodology towards “virtual rheometry” that could help and support rheological measurements.The basal slipperiness, major parameter in ice dynamics, is investigated using the same approach. Sensitivity analyses demonstrate an ability to see beyond the ”filtered” and non-local transmission of the basal variability to the surface. Consequently these sensitivities can be used to help defining areas of interest for observation and measurement. This basal slipperiness, empirical modeling of a multiscale complex process, is then used to carry on a comparison with a so called “self-adjoint” method, common in glaciology (neglecting the dependency of the viscosity on the velocity, i.e. the non-linearity). The adjoint model, obtained by automatic differentiation and evaluated by reverse accumulation, leads to define this approximation as a limit case of the complete inverse method. This formalism allows to generalize the process of the numerical evaluation of the adjoint state into an incomplete adjoint method, adjustable in time and accuracy depending on the quality of the data and the level of detail required in the identification.All this work is associated to the development of DassFlow-Ice software dedicated to the direct and inverse numerical simulation of free-surface viscoplastic fluids. This bidimensional prospective software, distributed within the glaciological com- munity, serves as a model for the current development of the tridimensional version.
165

Ajustement optimal des paramètres de forçage atmosphérique par assimilation de données de température de surface pour des simulations océaniques globales / Optimal adjustment of atmospheric forcing parameters for long term simulations of the global ocean circulation.

Meinvielle, Marion 17 January 2012 (has links)
La température de surface de l'océan (SST) est depuis l'avènement des satellites, l'une des variables océaniques la mieux observée. Les modèles réalistes de circulation générale océanique ne la prennent pourtant pas en compte explicitement dans leur fonction de forçage. Dans cette dernière, seules interviennent les variables atmosphériques à proximité de la surface (température, humidité, vitesse du vent, radiations descendantes et précipitations) connues pour être entachées d'incertitudes importantes dès lors qu'on considère l'objectif d'étudier la variabilité à long terme de l'océan et son rôle climatique. La SST est alors classiquement utilisée en assimilation de données pour contraindre l'état du modèle vers une solution en accord avec les observations mais sans corriger la fonction de forçage. Cette approche présente cependant les inconvénients de l'incohérence existant potentiellement entre la solution « forcée » et « assimilée ». On se propose dans cette thèse de développer dans un contexte réaliste une méthode d'assimilation de données de SST observée pour corriger les paramètres de forçage atmosphérique sans correction de l'état océanique. Le jeu de forçage faisant l'objet de ces corrections est composé des variables atmosphériques issues de la réanalyse ERAinterim entre 1989 et 2007. On utilise pour l'estimation de paramètres une méthode séquentielle basée sur le filtre de Kalman, où le vecteur d'état est augmenté des variables de forçage dont la distribution de probabilité a priori est évaluée via des expériences d'ensemble. On évalue ainsi des corrections de forçage mensuelles applicables dans un modèle libre pour la période 1989-2007 en assimilant la SST issue de la base de données de Hurrel (Hurrel, 2008), ainsi qu'une climatologie de salinité de surface (Levitus, 1994). Cette étude démontre la faisabilité d'une telle démarche dans un contexte réaliste, ainsi que l'amélioration de la représentation des flux océan-atmosphère par l'exploitation d'observations de la surface de l'océan. / Sea surface temperature (SST) is more accurately observed from space than near-surface atmospheric variables and air-sea fluxes. But ocean general circulation models for operational forecasting or simulations of the recent ocean variability use, as surface boundary conditions, bulk formulae which do not directly involve the observed SST. In brief, models do not use explicitly in their forcing one of the best observed ocean surface variable, except when assimilated to correct the model state. This classical approach presents however some inconsistency between the “assimilated” solution of the model and the “forced” one. The objective of this research is to develop in a realistic context a new assimilation scheme based on statistical methods that will use SST satellite observations to constrain (within observation-based air-sea flux uncertainties) the surface forcing function (surface atmospheric input variables) of ocean circulation simulations. The idea is to estimate a set of corrections for the atmospheric input data from ERAinterim reanalysis that cover the period from 1989 to 2007. We use a sequential method based on the SEEK filter, with an ensemble experiment to evaluate parameters uncertainties. The control vector is extended to correct forcing parameters (air temperature, air humidity, downward longwave and shortwave radiations, precipitation, wind velocity). Over experiments of one month duration, we assimilate observed monthly SST products (Hurrel, 2008) and SSS seasonal climatology (Levitus, 1994) data, to obtain monthly parameters corrections that we can use in a free run model This study shows that we can thus produce in a realistic case, on a global scale, and over a large time period, an optimal flux correction set that improves the forcing function of an ocean model using sea surface observations.
166

Assimilation de données pour l'initialisation et l'estimation de paramètres d'un modèle d'évolution de calotte polaire / Data assimilation for initialisation and parameter estimation of an ice sheet evolution model

Bonan, Bertrand 15 November 2013 (has links)
L'évolution des calottes polaires est régie à la fois par une dynamique d'écoulement complexe et par des mécanismes tel le glissement à la base, la température de la glace ou le bilan de masse en surface. De plus, de nombreuses boucles de rétroactions sont constatées entre les différents phénomènes impliquées. Tout ceci rend la modélisation de cette évolution complexe. Malgré tout, un certain nombre de modèles ont été développés dans cette optique. Ceux-ci font tous intervenir des paramètres influents qui dans certains cas sont peu ou pas connus. Ils nécessitent donc d'être correctement spécifiés. L'assimilation de données peut permettre une meilleure estimation de ces paramètres grâce à l'utilisation d'observations qui sont peu nombreuses en glaciologie. Dans cette thèse, nous nous intéressons à la mise en place de systèmes d'assimilation performants pour deux problèmes inverses concernant l'évolution des calottes polaires. Pour mieux nous concentrer sur ce point, nous avons travaillé avec un modèle d'évolution de calotte simplifié (appelé Winnie) qui, cependant, représente bien la plupart des processus complexes de la dynamique de la glace, et permet de travailler à différentes échelles de temps. Dans un premier temps, nous mettons en place une approche 4D-Var pour la reconstruction de l'évolution d'un paramètre climatique influant sur l'évolution d'une calotte sur une échelle de temps typique de 20 000 ans. Elle nécessite notamment l'écriture du code adjoint du modèle. Dans un second temps, nous nous intéressons au problème du spin-up. Ce problème de calibration du modèle pour des simulations à échelle de temps courtes (pas plus de 100 ans) consiste plus particulièrement en la reconstruction conjointe de l'état initial, de la topographie du socle rocheux et des paramètres de glissement basal. Nous développons ici une approche filtre de Kalman d'ensemble pour résoudre ce problème. / Ice sheet evolution is both driven by a complex flow dynamics and by physical mechanisms such as basal sliding, ice temperature or surface mass balance. In addition to those, many feedback loops are observed between the different implicated phenomena. That explains how complex is to model this evolution. However several models have been developed in that purpose. These models depend on influential parameters, which often are unfortunately poorly known. So they need to be correctly specified. Data assimilation can give a better estimation of these parameters thanks to observations which are quite rare in glaciology. In this thesis, we work on the setup of efficient data assimilation systems for two inverses problems involving ice sheet evolution. We work with a simplified ice sheet evolution model called Winnie in order to focus on the setup. Nevertheless Winnie takes into account the major complex processes of ice dynamics and can be used for studies with different time scales. The first part of the thesis focuses on developing a 4D-Var approach in order to retrieve the evolution of a climatic parameter for a typical time scale of 20 000 years. This approach require the implementation the adjoint code of the evolution model. In a second part, we focus on the spin-up problem. This calibration problem for short term (maximum 100 years) simulations involve retrieving jointly the initial state, the bedrock topography and basal sliding parameters. In order to solve this problem we develop an Ensemble Kalman Filter approach.
167

Assimilation de données pour les problèmes non-Gaussiens : méthodologie et applications à la biogéochimie marine / Data assimilation for non Gaussian problems : methodology and applications to biogeochemistry

Metref, Sammy 27 November 2015 (has links)
L'assimilation de données pour les géosciences est une discipline cherchant à améliorer notre connaissance d'un système physique en se basant sur l'information issue de modèles numériques simulant ce système et sur l'information issue des mesures observant ce système. Les méthodes d'assimilation de données traditionnellement utilisées (e.g. le 4DVar ou les filtres de Kalman d'ensemble) reposent sur des hypothèses de Gaussianité des probabilités en jeu et de linéarité des modèles. Avec la complexification des modèles et des réseaux d'observations, ces hypothèses sont de plus en plus injustifiées et donc pénalisantes. Cette complexification est particulièrement forte en océanographie couplée à la biogéochimie marine.Les objectifs de cette thèse sont de mieux comprendre l'apparition des non-Gaussianités dans un problème d'estimation, d'envisager une méthode d'assimilation de données adaptée aux problèmes fortement non-Gaussiens et, dans le cadre du couplage de la dynamique océanique et de la biogéochimie marine, d'explorer la pertinence de l'utilisation de méthodes non-Gaussiennes.Dans un premier temps, une étude méthodologique est conduite. Cette étude, appuyé par des illustrations avec le modèle de Lorenz à trois variables, permet de mettre en évidence les limitations des méthodes traditionnellement utilisées, face à des problèmes non-Gaussiens. Cette étude aboutit sur le développement d'un filtre d'assimilation de données d'ensemble entièrement non-Gaussien : le Multivariate Rank Histogram Filter (MRHF).Il est montré que le MRHF est performant dans des régimes fortement non-Gaussiens (notamment dans un régime bimodal) pour un nombre de membres relativement faible.Dans un second temps, une étude numérique est conduite. Cette étude est réalisée aux travers d'expériences jumelles basées sur un modèle vertical 1D, ModECOGeL, couplant la dynamique et la biogéochimie en mer Ligure. Nous simulons différents réseaux d'observations combinant des profils in situ et des données satellites. Plusieurs méthodes d'assimilation sont alors comparées à l'aide de diagnostics d'évaluation d'ensemble avancés.Nos expériences montrent l'impact du réseau d'observations et des variables de contrôle, sur le degré de non-Gaussianité d'un problème d'estimation. Le contrôle de la partie dynamique du modèle par des observations de la dynamique à différentes fréquences est un problème quasi-Gaussien, qu'un filtre aux moindres carrés, tel l'Ensemble Transform Kalman Filter, résout bien. En revanche pour ces mêmes observations, le contrôle de la biogéochimie s'avère être un problème non-Gaussien et nécessite l'utilisation d'un filtre non-Gaussien.Enfin, il est montré que l'assimilation de la couleur de l'eau, pour le contrôle mixte de la dynamique et de la biogéochimie, est améliorée par des méthodes adaptées aux non-Gaussianités, tel l'Ensemble Kalman Filter anamorphosé. De plus, l'augmentation de la fréquence d'observation de la couleur de l'eau rend incontournable l'utilisation de filtres fondamentalement non-Gaussiens comme le MRHF. / Data assimilation for Geosciences is a discipline seeking to improve our knowledge of a physical system based on the information from numerical models simulating this system and the information from the measures observing this system. The data assimilation methods traditionally used (eg the 4DVAR or the ensemble Kalman filters) are based on assumptions of Gaussianity of the probabilities involved and linearity of the models. With the increasing complexity of models and observation networks, these assumptions are increasingly unjustified and therefore penalizing. This complexity is particularly strong in oceanography coupled with marine biogeochemistry.The objectives of this thesis are to understand the appearance of non Gaussianity in an estimation problem, to think out a data assimilation method adapted to highly non Gaussian problems and, in the coupling of ocean dynamics and marine biogeochemistry, to explore the relevance of the use of non Gaussian methods.At first, a methodological study is conducted. This study, supported by illustrations with the three variable Lorenz model, allows to highlight the limitations of traditional methods when facing non Gaussian problems. This study led to the development of a fully non Gaussian data assimilation filter : the Multivariate Rank Histogram Filter (MRHF).It is shown that the MRHF is efficient in highly non Gaussian regimes (including in a bimodal regime) for a relatively small number of members.Secondly, a numerical study is conducted. This study is conducted with twin experiments based on a 1D vertical model, ModECOGeL, coupling dynamics and biogeochemistry in the Ligurian Sea. We simulate different observation networks combining in situ profiles and satellite data. Several data assimilation methods are then compared using advanced ensemble evaluation diagnoses.Our experiments show the impact of observation networks and controled variables on the degree of non Gaussianity in an estimation problem. The control of the dynamic part of the model by observations of the dynamics at different frequencies is a quasi Gaussian problem, which a least squared filter such as the Ensemble Transform Kalman Filter solves well. In contrast, for the same observations, the control of biogeochemistry proves to be a non Gaussian problem and requires the use of a non Gaussian filter. Finally, it is shown that assimilation of ocean color data, for the joint control of the dynamic and the biogeochemistry, is improved by methods adapted for non Gaussianities such as the Anamorphosed Ensemble Kalman Filter. In addition, increasing the ocean color observation frequency makes unavoidable the use of fundamentally non Gaussian filters such as the MRHF.
168

Previsão de vazão usando estimativas de precipitação por satélite e assimilação de dados

Quiroz Jiménez, Karena January 2017 (has links)
Neste estudo, trata-se de avaliar fontes de precipitação baseadas em estimativas por satélite e técnicas de assimilação de dados para previsão de vazões por meio do modelo hidrológico distribuído MGB-IPH. A insuficiente representatividade espacial dos pluviômetros torna difícil a correta representação dos campos de precipitações. Por outro lado, as estimativas de satélite, embora forneçam uma descrição espacial mais consistente, são potencialmente menos acuradas. Sendo assim, procura-se utilizar métodos que combinem os dados de ambas as fontes para gerar um campo de precipitação mais consistente. Neste trabalho, implementaramse dois modelos de combinação pluviômetro-satélite, CHUVSAT e MERGEHQ, através de uma metodologia de interpolação. Por outro lado, as técnicas de assimilação de dados acoplados aos modelos de previsão hidrológica são também de interesse neste estudo, pois minimizam as incertezas associadas ao processo de calibração de parâmetros, às variáveis de estado e dados de entrada do modelo hidrológico. Para esse propósito, escolheu-se a bacia do rio Tocantins e implementou-se particularmente a técnica de assimilação de dados de tipo sequencial chamado na literatura de filtro de partículas, conjuntamente com o método de filtro Kalman por conjunto e o método de assimilação AsMGB atualmente acoplado ao modelo MGB-IPH. O estudo mostra que a precipitação combinada utilizada como dado de entrada na simulação hidrológica permitiu reproduzir adequadamente os hidrogramas observados para o período de calibração e validação. Já para o caso das vazões resultantes, durante a etapa de previsão, a precipitação combinada mostrou-se com melhor desempenho em termos estatísticos que os métodos sem combinar, sobretudo após 24 horas de antecedência. Finalmente, a técnica de assimilação de dados por filtro de partículas conseguiu absorver os erros da simulação melhorando as medidas de desempenho na etapa de previsão sendo superior ao modelo de previsão sem considerar assimilação. / The objective of this study is to evaluate precipitation sources based on satellite estimates and data assimilation techniques for prediction of flows by means of the distributed hydrological model MGB-IPH. The insufficient spatial availability of rain gauges makes difficult to represent precipitation fields appropriately. In contrast, satellite estimates, although providing a more consistent spatial description, are potentially less accurate. Thus, raingauge satellite merging methods that combine data from both sources to generate a more consistent precipitation field are used herein. For this purpose, two models namely CHUVSAT and MERGEHQ were implemented using an interpolation technique. On the other hand, data assimilation techniques coupled with hydrological forecasting models are also assessed in this study. The assimilation process minimizes the uncertainties associated with the parameter calibration procedure, variable state and hydrological input data. In this manner, the sequential data assimilation technique namely particle filter in conjunction with the Kalman filter method and the assimilation method AsMGB, which is currently coupled to the MGBIPH model, were implemented and applied to the Tocantis basin. The obtained results showed that the combined precipitation used as input data in the hydrological simulation allowed reproducing adequately the observed hydrograms for the periods of calibration and validation. In the case of the resulting flows during the forecast stage, the merging precipitation was shown to perform better in statistical terms than the uncombined methods, especially after 24 hours in advance. Finally, the data assimilation technique by particle filter was able to absorb all simulation errors, improving the performance measures in the forecasting stage, thus being superior to the forecasting model without considering assimilation.
169

Continuous data assimilation for Navier-Stokes-alpha model = Assimilação contínua de dados para o modelo Navier-Stokes-alpha / Assimilação contínua de dados para o modelo Navier-Stokes-alpha

Albanez, Débora Aparecida Francisco, 1984- 04 October 2014 (has links)
Orientadores: Milton da Costa Lopes Filho, Helena Judith Nussenzveig Lopes / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T00:41:15Z (GMT). No. of bitstreams: 1 Albanez_DeboraAparecidaFrancisco_D.pdf: 3117782 bytes, checksum: 4f8e30c3d217ed3a6d26e9924d4df7ab (MD5) Previous issue date: 2014 / Resumo: Motivados pela existênca de um número finito de parâmetros determinantes (graus de liberdade), tais como modos, nós e médias espaciais locais para sistemas dinâmicos dissipativos, principalmente as equações de Navier-Stokes, apresentamos nesta tese um novo algoritmo de assimilação contínua de dados para o modelo tridimensional das equações Navier-Stokes-alpha, o qual consiste na introdução de um tipo geral de operador interpolante de aproximação (construído a partir de medições observacionais) dentro das equações de Navier-Stokes-alpha. O principal resultado garante condições sob a resolução espacial de dimensão finita dos dados coletados, suficientes para que a solução aproximada, construída a partir desses dados coletados, convirja para a referente solução que não conhecemos (realidade física) no tempo. Essas condições são dadas em termos de alguns parâmetros físicos, tais como a viscosidade cinemática, o tamanho do domínio e o termo de força / Abstract: Motivated by the presence of the finite number of determining parameters (degrees of freedom) such as modes, nodes and local spatial averages for dissipative dynamical systems, specially Navier-Stokes equations, we present in this thesis a new continuous data assimilation algorithm for the three-dimensional Navier-Stokes-alpha model, which consists of introducing a general type of approximation interpolation operator, (that is constructed from observational measurements), into the Navier-Stokes-alpha equations. The main result provides conditions on the finite-dimensional spatial resolution of the collected data, sufficient to guarantee that the approximating solution, that is obtained from these collected data, converges to the unkwown reference solution (physical reality) over time. These conditions are given in terms of some physical parameters, such as kinematic viscosity, the size of the domain and the forcing term / Doutorado / Matematica / Doutora em Matemática
170

Reconstitution de la convection du manteau terrestre par assimilation de données séquentielle / Reconstruction of Mantle Circulation Using Sequential Data Assimilation

Bocher, Marie 25 November 2016 (has links)
Cette thèse vise à proposer de nouvelles méthodes permettant de reconstruire la circulation dans le manteau terrestre et l'évolution de la tectonique de surface pour les deux cents derniers millions d'années. Nous utilisons des modèles numériques de convection mantellique dans lesquels la dynamique de surface est comparable à la tectonique terrestre. En combinant ces modèles avec des reconstructions de la tectonique des plaques il est possible d'estimerla structure et l'évolution du champ de température dans le manteau. Jusqu'à présent, l'inclusion des reconstructions de la tectonique des plaques se faisait en imposant des conditions aux limites du modèle (équilibre des forces, vitesses imposées...). Ces techniques, bien que permettant de tester la validité de différents scénarios tectoniques alternatifs, n'autorisent pas de rétroaction dynamique de la convection mantellique sur la tectonique de surface.Dans ce travail, nous avons développé des techniques d'assimilation de données permettant d'intégrer les reconstructions de la tectonique des plaques dans un modèle numérique tout en laissant se développer de manière auto-cohérente cette rétroaction. Les techniques développées permettent également de prendre en compte les incertitudes associées aux reconstructions de la tectonique des plaques et de calculer les erreurs sur l'estimation finale de la circulationmantellique.Dans un premier temps, nous avons développé un filtre de Kalman suboptimal qui permet d'estimer la structure et l'évolution de la circulation mantellique la plus probable à partir d'un modèle numérique de convection et d'une sérietemporelle d'observations de surface, ainsi que de leurs incertitudes respectives.Ce filtre a été testé sur des expériences synthétiques. Celles-ci consistent à tenter de retrouver une évolution témoin à partir d'une série temporelle de données issues de cette évolution. Ces expériences ont montré qu'il était possible, enprincipe, de reconstruire la structure et l'évolution de l'ensemble du manteau à partir d'observations de vitesses et de flux de chaleur à la surface.Dans un second temps, nous avons développé un filtre de Kalman d'ensemble. Ce filtre permet non seulement d'estimer de manière plus précise la géométrie des structures mantelliques, mais aussi les incertitudes sur cette estimation. / This dissertation focuses on the developpement of data assimilation methods to reconstruct the circulation of the Earth's mantle and the evolution of its surface tectonics for the last 200~Myrs. We use numerical models of mantle convection in which the surface dynamics is similar to the Earth's. By combining these models with plate tectonics reconstructions, it is possible to estimate the structure and evolution of the temperature field of the mantle. So far, the assimilation of plate tectonics reconstructions was done by imposing specific boundary conditions in the model (force balance, imposed velocities...). These techniques, although insightful to test the likeliness of alternative tectonic scenarios, do not allow the full expression of the dynamical feedback between mantle convection and surface tectonics. We develop sequential data assimilation techniques able to assimilate plate tectonics reconstructions in a numerical model while simultaneously letting this dynamicalfeedback develop self-consistently. Moreover, these techniques take into account errors in plate tectonics reconstructions, and compute the error on the final estimation of mantle circulation.First, we develop a suboptimal Kalman filter. This filter estimates the most likely structure and evolution of mantle circulation from a numerical model of mantle convection, a time series of surface observations and the uncertainty on both. This filter was tested on synthetic experiments. The principle of a synthetic experiment is to apply the data assimilation algorithm to a set of synthetic observations obtained from a reference run, and to then compare the obtained estimation of the evolution with the reference evolution. The synthetic experiments we conducted showed that it was possible, in principle, to reconstruct the structure and evolution of the whole mantle from surface velocities and heat flux observations.Second, we develop an Ensemble Kalman Filter. Instead of estimating the most likely evolution, an ensemble of possible evolutions are computed. This technique leads to a better estimation of the geometry of mantle structures and a more complete estimation of the uncertainties associated.

Page generated in 0.0942 seconds