• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 57
  • 13
  • 13
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 216
  • 216
  • 75
  • 39
  • 36
  • 35
  • 35
  • 26
  • 25
  • 19
  • 18
  • 18
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Méthodes variationnelles d'ensemble itératives pour l'assimilation de données non-linéaire : Application au transport et la chimie atmosphérique / Iterative ensemble variational methods for nonlinear data assimilation : Application to transport and atmospheric chemistry

Haussaire, Jean-Matthieu 23 June 2017 (has links)
Les méthodes d'assimilation de données sont en constante évolution pour s'adapter aux problèmes à résoudre dans les multiples domaines d’application. En sciences de l'atmosphère, chaque nouvel algorithme a d'abord été implémenté sur des modèles de prévision numérique du temps avant d'être porté sur des modèles de chimie atmosphérique. Ce fut le cas des méthodes variationnelles 4D et des filtres de Kalman d'ensemble par exemple. La nouvelle génération d'algorithmes variationnels d'ensemble quadridimensionnels (EnVar 4D) ne fait pas exception. Elle a été développée pour tirer partie des deux approches variationnelle et ensembliste et commence à être appliquée au sein des centres opérationnels de prévision numérique du temps, mais n'a à ce jour pas été testée sur des modèles opérationnels de chimie atmosphérique.En effet, la complexité de ces modèles rend difficile la validation de nouvelles méthodes d’assimilation. Il est ainsi nécessaire d'avoir à disposition des modèles d’ordre réduit, qui doivent être en mesure de synthétiser les phénomènes physiques à l'{oe}uvre dans les modèles opérationnels tout en limitant certaines des difficultés liées à ces derniers. Un tel modèle, nommé L95-GRS, a donc été développé. Il associe la météorologie simpliste du modèle de Lorenz-95 à un module de chimie de l'ozone troposphérique avec 7 espèces chimiques. Bien que de faible dimension, il reproduit des phénomènes physiques et chimiques observables en situation réelle. Une méthode d'assimilation de donnée, le lisseur de Kalman d'ensemble itératif (IEnKS), a été appliquée sur ce modèle. Il s'agit d'une méthode EnVar 4D itérative qui résout le problème non-linéaire variationnel complet. Cette application a permis de valider les méthodes EnVar 4D dans un contexte de chimie atmosphérique non-linéaire, mais aussi de soulever les premières limites de telles méthodes.Fort de cette expérience, les résultats ont été étendus au cas d’un modèle réaliste de prévision de pollution atmosphérique. Les méthodes EnVar 4D, via l'IEnKS, ont montré leur potentiel pour tenir compte de la non-linéarité du modèle de chimie dans un contexte maîtrisé, avec des observations synthétiques. Cependant, le passage à des observations réelles d'ozone troposphérique mitige ces résultats et montre la difficulté que représente l'assimilation de données en chimie atmosphérique. En effet, une très forte erreur est associée à ces modèles, provenant de sources d'incertitudes variées. Deux démarches doivent alors être entreprises pour pallier ce problème.Tout d’abord, la méthode d’assimilation doit être en mesure de tenir compte efficacement de l’erreur modèle. Cependant, la majorité des méthodes sont développées en supposant au contraire un modèle parfait. Pour se passer de cette hypothèse, une nouvelle méthode a donc été développée. Nommée IEnKF-Q, elle étend l'IEnKS au cas avec erreur modèle. Elle a été validée sur un modèle jouet, démontrant sa supériorité par rapport à des méthodes d'assimilation adaptées naïvement pour tenir compte de l’erreur modèle.Toutefois, une telle méthode nécessite de connaître la nature et l'amplitude exacte de l'erreur modèle qu'elle doit prendre en compte. Aussi, la deuxième démarche consiste à recourir à des outils statistiques pour quantifier cette erreur modèle. Les algorithmes d'espérance-maximisation, de emph{randomize-then-optimize} naïf et sans biais, un échantillonnage préférentiel fondé sur l'approximation de Laplace, ainsi qu'un échantillonnage avec une méthode de Monte-Carlo par chaînes de Markov, y compris transdimensionnelle, ont ainsi été évalués, étendus et comparés pour estimer l'incertitude liée à la reconstruction du terme source des accidents des centrales nucléaires de Tchernobyl et Fukushima-Daiichi.Cette thèse a donc enrichi le domaine de l'assimilation de données EnVar 4D par ses apports méthodologiques et en ouvrant la voie à l’application de ces méthodes sur les modèles de chimie atmosphérique / Data assimilation methods are constantly evolving to adapt to the various application domains. In atmospheric sciences, each new algorithm has first been implemented on numerical weather prediction models before being ported to atmospheric chemistry models. It has been the case for 4D variational methods and ensemble Kalman filters for instance. The new 4D ensemble variational methods (4D EnVar) are no exception. They were developed to take advantage of both variational and ensemble approaches and they are starting to be used in operational weather prediction centers, but have yet to be tested on operational atmospheric chemistry models.The validation of new data assimilation methods on these models is indeed difficult because of the complexity of such models. It is hence necessary to have at our disposal low-order models capable of synthetically reproducing key physical phenomenons from operational models while limiting some of their hardships. Such a model, called L95-GRS, has therefore been developed. It combines the simple meteorology from the Lorenz-95 model to a tropospheric ozone chemistry module with 7 chemical species. Even though it is of low dimension, it reproduces some of the physical and chemical phenomenons observable in real situations. A data assimilation method, the iterative ensemble Kalman smoother (IEnKS), has been applied to this model. It is an iterative 4D EnVar method which solves the full non-linear variational problem. This application validates 4D EnVar methods in the context of non-linear atmospheric chemistry, but also raises the first limits of such methods.After this experiment, results have been extended to a realistic atmospheric pollution prediction model. 4D EnVar methods, via the IEnKS, have once again shown their potential to take into account the non-linearity of the chemistry model in a controlled environment, with synthetic observations. However, the assimilation of real tropospheric ozone concentrations mitigates these results and shows how hard atmospheric chemistry data assimilation is. A strong model error is indeed attached to these models, stemming from multiple uncertainty sources. Two steps must be taken to tackle this issue.First of all, the data assimilation method used must be able to efficiently take into account the model error. However, most methods are developed under the assumption of a perfect model. To avoid this hypothesis, a new method has then been developed. Called IEnKF-Q, it expands the IEnKS to the model error framework. It has been validated on a low-order model, proving its superiority over data assimilation methods naively adapted to take into account model error.Nevertheless, such methods need to know the exact nature and amplitude of the model error which needs to be accounted for. Therefore, the second step is to use statistical tools to quantify this model error. The expectation-maximization algorithm, the naive and unbiased randomize-then-optimize algorithms, an importance sampling based on a Laplace proposal, and a Markov chain Monte Carlo simulation, potentially transdimensional, have been assessed, expanded, and compared to estimate the uncertainty on the retrieval of the source term of the Chernobyl and Fukushima-Daiichi nuclear power plant accidents.This thesis therefore improves the domain of 4D EnVar data assimilation by its methodological input and by paving the way to applying these methods on atmospheric chemistry models
132

Assimilation de données ensembliste et couplage de modèles hydrauliques 1D-2D pour la prévision des crues en temps réel. Application au réseau hydraulique "Adour maritime / Ensemblist data assimilation and 1D-2D hydraulic model coupling for real-time flood forecasting. Application to the "Adour maritime" hydraulic network

Barthélémy, Sébastien 12 May 2015 (has links)
Les inondations sont un risque naturel majeur pour les biens et les personnes. Prévoir celles-ci, informer le grand public et les autorités sont de la responsabilité des services de prévision des crues. Pour ce faire ils disposent d'observations in situ et de modèles numériques. Néanmoins les modèles numériques sont une représentation simplifiée et donc entachée d'erreur de la réalité. Les observations quant à elle fournissent une information localisée et peuvent être également entachées d'erreur. Les méthodes d'assimilation de données consistent à combiner ces deux sources d'information et sont utilisées pour réduire l'incertitude sur la description de l'état hydraulique des cours d'eau et améliorer les prévisisons. Ces dernières décennies l'assimilation de données a été appliquée avec succès à l'hydraulique fluviale pour l'amélioration des modèles et pour la prévision des crues. Cependant le développement de méthodes d'assimilation pour la prévision en temps réel est contraint par le temps de calcul disponible et par la conception de la chaîne opérationnelle. Les méthodes en question doivent donc être performantes, simples à implémenter et peu coûteuses. Un autre défi réside dans la combinaison des modèles hydrauliques de dimensions différentes développés pour décrire les réseaux hydrauliques. Un modèle 1D est peu coûteux mais ne permet pas de décrire des écoulement complexes, contrairement à un modèle 2D. Le simple chainage des modèles 1D et 2D avec échange des conditions aux limites n'assure pas la continuité de l'état hydraulique. Il convient alors de coupler les modèles, tout en limitant le coût de calcul. Cette thèse a été financée par la région Midi-Pyrénées et le SCHAPI (Service Central d'Hydrométéorolgie et d'Appui à la Prévisions des Inondations) et a pour objectif d'étudier l'apport de l'assimilation de données et du couplage de modèles pour la prévision des crues. Elle se décompose en deux axes : Un axe sur l'assimilation de données. On s'intéresse à l'émulation du filtre de Kalman d'Ensemble (EnKF) sur le modèle d'onde de crue. On montre, sous certaines hypothèses, qu'on peut émuler l'EnKF avec un filtre de Kalman invariant pour un coût de calcul réduit. Dans un second temps nous nous intéressons à l'application de l'EnKF sur l'Adour maritime avec un modèle Saint-Venant. Nous en montrons les limitations dans sa version classique et montrons les avantages apportés par des méthodes complémentaires d'inflation et d'estimation des covariances d'erreur d'observation. L'apport de l'assimilation des données in situ de hauteurs d'eau sur des cas synthétiques et sur des crues réelles a été démontré et permet une correction spatialisée des hauteurs d'eau et des débits. En conséquence, on constate que les prévisions à court terme sont améliorées. Nous montrons enfin qu'un système de prévisions probabilistes sur l'Adour dépend de la connaissance que l'on a des forçages amonts ; un axe sur le couplage de modèles hydrauliques. Sur l'Adour 2 modèles co-existent : un modèle 1D et un modèle 2D au niveau de Bayonne. Deux méthodes de couplage ont été implémentées. Une première méthode, dite de "couplage à interfaces", combine le 1D décomposé en sous-modèles couplés au 2D au niveau frontières liquides de ce dernier. Une deuxième méthode superpose le 1D avec le 2D sur la zone de recouvrement ; le 1D force le 2D qui, quand il est en crue, calcule les termes d'apports latéraux pour le 1D, modélisant les échanges entre lit mineur et lit majeur. Le coût de calcul de la méthode par interfaces est significativement plus élevé que celui associé à la méthode de couplage par superposition, mais assure une meilleure continuité des variables. En revanche, la méthode de superposition est immédiatement compatible avec l'approche d'assimilation de données sur la zone 1D. / Floods represent a major threat for people and society. Flood forecasting agencies are in charge of floods forecasting, risk assessment and alert to governmental authorities and population. To do so, flood forecasting agencies rely on observations and numerical models. However numerical models and observations provide an incomplete and inexact description of reality as they suffer from various sources of uncertianties. Data assimilation methods consists in optimally combining observations with models in order to reduce both uncertainties in the models and in the observations, thus improving simulation and forecast. Over the last decades, the merits of data assimilation has been greatly demonstrated in the field of hydraulics and hydrology, partly in the context of model calibration or flood forecasting. Yet, the implementation of such methods for real application, under computational cost constraints as well as technical constraints remains a challenge. An other challenge arises when the combining multidimensional models developed over partial domains of catchment. For instance, 1D models describe the mono-dimensional flow in a river while 2D model locally describe more complex flows. Simply chaining 1D and 2D with boundary conditions exchange does not suffice to guarantee the coherence and the continuity of both water level and discharge variables between 1D and 2D domains. The solution lies in dynamical coupling of 1D and 2D models, yet an other challenge when computational cost must be limited. This PhD thesis was funded by Midi-Pyrénées region and the french national agency for flood forecasting SCHAPI. It aims at demonstrating the merits of data assimilation and coupling methods for floof forecasting in the framework of operational application. This thesis is composed of two parts : A first part dealing with data assimilation. It was shown that, under some simplifying assumptions, the Ensemble Kalman filter algorithm (EnKF) can be emulated with a cheaper algorithm : the invariant Kalman filter. The EnKF was then implemented ovr the "Adour maritime" hydraulic network on top of the MASCARET model describing the shallow water equations. It was found that a variance inflation algorithm can further improve data assimlation results with the EnKF. It was shown on synthetical and real cases experiments that data assimilation provides an hydraulic state that is in great agreement with water level observations. As a consequence of the sequential correction of the hydraulic state over time, the forecasts were also greatly improved by data assimilation over the entire hydraulic network for both assimilated and nonassimilated variables, especially for short term forecasts. It was also shown that a probabilistic prediction system relies on the knowledge on the upstream forcings ; A second part focusses on hydraulic models coupling. While the 1D model has a great spatial extension and describes the mono-dimensional flow, the 2D model gives a focus on the Adour-Nive confluence in the Bayonne area. Two coupling methods have been implemented in this study : a first one based on the exchange of the state variables at the liquid boundaries of the models and a second one where the models are superposed. While simple 1D or chained 1D-2D solutions provide an incomplete or discontinuous description of the hydraulic state, both coupling methods provide a full and dynamically coherent description of water level and discharge over the entire 1D-2D domain. On the one hand, the interface coupling method presents a much higher computational cost than the superposition methods but the continuity is better preserved. On the other hand, the superposition methods allows to combine data assimilation of the 1D model and 1D-2D coupling. The positive impact of water level in-situ observations in the 1D domain was illustrated over the 2D domain for a flood event in 2014.
133

Modèles multi-échelles pour l'analyse d'images : application à la turbulence

Zille, Pascal 07 November 2014 (has links)
Cette étude a pour cadre l’analyse d’images dans un contexte multi-échelles, une attention particulière étant portée sur les images fluides dans un contexte turbulent. Nous traitons en premier lieu le problème de l’estimation de mouvement. Dans un contexte multi-échelles, on néglige bien souvent dans un premier temps la contribution des fines échelles du problème. Nous proposons, pour pallier ce problème, plusieurs termes d’attache aux données dérivant de l’OFCE. Ceux-ci permettent, à chaque niveau d’échelle, la prise en compte de ces composantes fines échelles. Les performances de ces termes sont expérimentalement démontrées sur des images générales et fluides. Nous abordons en second lieu le problème de super-résolution d’images de scalaires passifs : nous souhaitons reconstruire, de manière explicite, certains détails manquants au sein d’images basse résolution données. Pour cela, nous utilisons plusieurs modèles issus de la simulation des grandes échelles ainsi que des méthodes d’assimilation de données permettant d’assurer une certaine cohérence temporelle de la solution. Les approches présentées sont expérimentalement étudiées sur différentes séquences d’images. Enfin, nous proposons une méthode d’estimation multi-résolution permettant de combiner de manière simultanée les informations issues des différents niveaux de résolution. / This thesis is concerned with image analysis within a multi-scale framework. Specific attention is given to fluid images in the presence of turbulence. In a first part, we adress the problem of multi-scale motion estimation from image sequences. Starting from OFCE equation, we derive several image data terms allowing to take into account, while estimating the solution coarse scales, the contribution of the finer scales components usually neglected in classic approaches. The performances of the resulting estimators is demonstrated on both general and fluid images. The second step of this study is concerned with the problem of passive scalar images super- resolution : starting from low resolution input images, we aim at recovering some of the missing high frequencies. We proposed several methods inspired by the LES framework, as well as data assimilation techniques, in order to ensure the solution consistency over time. Such approaches are experimented and compared over various image sequences. Finally, we propose a multi-resolution estimation method simultaneously combining informations from different grid levels.
134

Estimation de la dynamique à partir des structures observées dans une séquence d'images / Estimation of motion from observed objects in image sequences

Lepoittevin, Yann 03 December 2015 (has links)
Cette thèse traite de l'estimation du mouvement à partir d'une séquence d'images par des méthodes d'assimilation de données. Les travaux ont porté sur la prise en compte des objets dans les processus d'estimation, afin de corréler en espace les résultats obtenus. Les deux composantes méthodologiques que sont approche variationnelle et approche séquentielle sont traitées. L'algorithme variationnel repose sur une équation d'évolution, une équation d'ébauche et une équation d'observation. L'estimation s'obtient comme le minimum d'une fonction de coût. Dans une première étape, l'objet est décrit par sa courbe frontière. Le modèle dynamique caractérise l'évolution des images et déplace les objets afin que leurs positions correspondent à celles observées dans les acquisitions image. Cette approche impacte fortement les temps de calculs, mais permet une amélioration de l'estimation du mouvement. Deuxièmement, les valeurs de la matrice de covariance des erreurs d'ébauche sont modifiées afin de corréler, à moindre coût, les pixels de l'image. L'algorithme séquentiel présenté repose sur la création d'un ensemble de vecteurs d'état ainsi que sur des approches de localisation. Pour modéliser les objets, un nouveau critère de localisation portant sur l'intensité de niveau de gris des pixels a été défini. Cependant, la localisation, si elle est appliquée directement sur la matrice de covariance d'erreur, rend la méthode inutilisable pour de grandes images. Une approche consistant à découper le domaine global en sous-domaines indépendants, avant d'estimer le mouvement, a été mise au point. La prise en compte des objets intervient lors du découpage du domaine d'analyse global. / This thesis describes approaches estimating motion from image sequences with data assimilation methods. A particular attention is given to include representations of the displayed objects in the estimation process. Variational and sequential implementations are discussed in the document.The variational methods rely on an evolution equation, a background equation and an observation equation, which characterize the studied system and the observations. The motion estimation is obtained as the minimum of a cost function. In a first approach, the structures are modeled by their boundaries. The image model describes both the evolution of the gray level function and the displacement of the structures. The resulting motion field should allow the position of the structures in the model to match their observed position. The use of structures betters the result. A second approach, less expensive regarding the computational costs, is designed, where the structures are modeled by the values of the background error covariance matrix.The sequential approach, described in the thesis, relies on the creation of an ensemble of state vectors and on the use of localization methods. In order to model the structures, a new localization criteria based on the gray level values is defined. However, the localization method, if directly applied on the background error covariance matrix, renders the approach inoperable on large images. Therefore, another localization method is designed, which consists to decompose the image domain into independent subdomains before the estimation. Here, the structures representation intervenes while decomposing the global domain.
135

Apport des données polarimétriques radar pour un modèle atmosphérique à échelle convective / Interest of polarimetric radar observations for convective scale numerical weather prediction models

Augros, Clotilde 19 May 2016 (has links)
Cette thèse a permis d'explorer l'apport des variables polarimétriques radar (aux longueurs d'onde centimétriques), sensibles aux propriétés microphysiques des hydrométéores, pour les modèles de prévision numérique à échelle convective. Dans la première partie de la thèse, un opérateur d'observation radar polarimétrique, cohérent avec les paramétrisations microphysiques à 1 moment couramment utilisées par les modèles opérationnels à échelle convective a été développé. Des comparaisons entre données simulées et observées pour tous les types de radar (S, C et X) ont été réalisées pour deux cas d'étude convectifs, et ont permis de valider l'opérateur d'observation. La deuxième partie de cette thèse a été consacrée à la conception et au test d'une méthode d'assimilation des variables polarimétriques, s'appuyant sur la méthode opérationnelle 1D+3D-Var, d'assimilation des réflectivités radar dans le modèle AROME. La méthode de restitution bayésienne 1D des profils d'humidité a été adaptée, afin d'inclure la phase différentielle spécifique et la réflectivité différentielle, en plus de la réflectivité, dans le vecteur d'observation. Plusieurs options de la méthode de restitution ont été testées et évaluées par des comparaisons aux observations radar et GPS. Des expériences d'assimilation menées sur deux cas convectifs ont ensuite été réalisées et ont permis d'évaluer l'impact des observations polarimétriques sur les champs analysés d'humidité ainsi que sur les prévisions de réflectivité et de cumuls de précipitation. / This PhD has explored the benefits of polarimetric variables (for centimeter wavelength radars), which are sensitive to the microphysical properties of hydrometeors, for convective scale numerical prediction models. In the first part of the PhD, a radar forward operator, consistent with the bulk 1 moment microphysical schemes typically used by the operational convective scale models, has been designed. Comparisons between observed and simulated variables for all radar types (S, C, X) have been performed for two convective cases, and helped validate the forward operator. Following these comparisons, quality controls have been specified so as to limitate the errors on the polarimetric variables before using them for assimilation. In the second part of the PhD, an assimilation method for polarimetric variables, based on the operational 1D+3D-Var assimilation method used for radar reflectivities in AROME model has been designed. The Bayesian retrieval of 1D humidity profiles has been adapted in order to include differential reflectivity and specific differential phase within the observation vector. Different options of the methodology have been tested and evaluated by comparisons with radar and GPS observations. Assimilation experiments conducted for two convective cases demonstrated an impact on analysed humidity fields. The effect of the assimilation of polarimetric variables on forecasted reflectivities and precipitation accumulations was also evaluated.
136

Ensemblový Kalmanův filtr na prostorech velké a nekonečné dimenze / Ensemble Kalman filter on high and infinite dimensional spaces

Kasanický, Ivan January 2017 (has links)
Title: Ensemble Kalman filter on high and infinite dimensional spaces Author: Mgr. Ivan Kasanický Department: Department of Probability and Mathematical Statistics Supervisor: doc. RNDr. Daniel Hlubinka, Ph.D., Department of Probability and Mathematical Statistics Consultant: prof. RNDr. Jan Mandel, CSc., Department of Mathematical and Statistical Sciences, University of Colorado Denver Abstract: The ensemble Kalman filter (EnKF) is a recursive filter, which is used in a data assimilation to produce sequential estimates of states of a hidden dynamical system. The evolution of the system is usually governed by a set of di↵erential equations, so one concrete state of the system is, in fact, an element of an infinite dimensional space. In the presented thesis we show that the EnKF is well defined on a infinite dimensional separable Hilbert space if a data noise is a weak random variable with a covariance bounded from below. We also show that this condition is su cient for the 3DVAR and the Bayesian filtering to be well posed. Additionally, we extend the already known fact that the EnKF converges to the Kalman filter in a finite dimension, and prove that a similar statement holds even in a infinite dimension. The EnKF su↵ers from a low rank approximation of a state covariance, so a covariance localization is required in...
137

Využití nekonvenčních pozorování v asimilaci dat do numerického předpovědního modelu počasí ve vysokém rozlišení spojení se studiem pomalého podprostoru řešení modelu / Non-conventional data assimilation in high resolution numerical weather prediction model with study of the slow manifold of the model

Benáček, Patrik January 2019 (has links)
Satellite instruments currently provide the largest source of infor- mation to today's data assimilation (DA) systems for numerical weather predic- tion (NWP). With the development of high-resolution models, the efficient use of observations at high density is essential to improve small-scale information in the weather forecast. However, a large amount of satellite radiances has to be removed from DA by horizontal data thinning due to uncorrelated observation error assumptions. Moreover, satellite radiances include systematic errors (biases) that may be even larger than the observation signal itself, and must be properly removed prior to DA. Although the Variational Bias Correction (VarBC) scheme is widely used by global NWP centers, there are still open questions regarding its use in Limited-Area Models (LAMs). This thesis aims to tackle the obser- vation error difficulties in assimilating polar satellite radiances in the meso-scale ALADIN system. Firstly, we evaluate spatial- and inter-channel error correla- tions to enhance the positive effect of data thinning. Secondly, we study satellite radiance bias characteristics with the key aspects of the VarBC in LAMs, and we compare the different VarBC configurations with regards to forecast performance. This work is a step towards improving the...
138

Remotely Sensed Data Assimilation Technique to Develop Machine Learning Models for Use in Water Management

Zaman, Bushra 01 May 2010 (has links)
Increasing population and water conflicts are making water management one of the most important issues of the present world. It has become absolutely necessary to find ways to manage water more efficiently. Technological advancement has introduced various techniques for data acquisition and analysis, and these tools can be used to address some of the critical issues that challenge water resource management. This research used learning machine techniques and information acquired through remote sensing, to solve problems related to soil moisture estimation and crop identification on large spatial scales. In this dissertation, solutions were proposed in three problem areas that can be important in the decision making process related to water management in irrigated systems. A data assimilation technique was used to build a learning machine model that generated soil moisture estimates commensurate with the scale of the data. The research was taken further by developing a multivariate machine learning algorithm to predict root zone soil moisture both in space and time. Further, a model was developed for supervised classification of multi-spectral reflectance data using a multi-class machine learning algorithm. The procedure was designed for classifying crops but the model is data dependent and can be used with other datasets and hence can be applied to other landcover classification problems. The dissertation compared the performance of relevance vector and the support vector machines in estimating soil moisture. A multivariate relevance vector machine algorithm was tested in the spatio-temporal prediction of soil moisture, and the multi-class relevance vector machine model was used for classifying different crop types. It was concluded that the classification scheme may uncover important data patterns contributing greatly to knowledge bases, and to scientific and medical research. The results for the soil moisture models would give a rough idea to farmers/irrigators about the moisture status of their fields and also about the productivity. The models are part of the framework which is devised in an attempt to provide tools to support irrigation system operational decisions. This information could help in the overall improvement of agricultural water management practices for large irrigation systems. Conclusions were reached based on the performance of these machines in estimating soil moisture using remotely sensed data, forecasting spatial and temporal variation of soil moisture and data classification. These solutions provide a new perspective to problem–solving techniques by introducing new methods that have never been previously attempted.
139

Vers une assimilation des données de déformation en volcanologie / Towards assimilation of deformation measurements in volcanology

Bato, Mary Grace 02 July 2018 (has links)
Le suivi de la mise en place du magma à faible profondeur et de sa migration vers la surface est crucial pour prévoir les éruptions volcaniques.Avec les progrès récents de l'imagerie SAR et le nombre croissant de réseaux GNSS continus sur les volcans, il est maintenant possible de fournir une évolution continue et spatialement étendue des déplacements de surface pendant les périodes inter-éruptives. Pour les volcans basaltiques, ces mesures combinées à des modèles dynamiques simples peuvent être exploitées pour caractériser et contraindre la mise en pression d'un ou de plusieurs réservoirs magmatiques, ce qui fournit une meilleure information prédictive sur l'emplacement du magma à faible profondeur. L'assimilation de données—un processus séquentiel qui combine au mieux les modèles et les observations, en utilisant parfois une information a priori basée sur les statistiques des erreurs, pour prédire l'état d'un système dynamique—a récemment gagné en popularité dans divers domaines des géosciences. Dans cette thèse, je présente la toute première application de l'assimilation de données en volcanologie en allant des tests synthétiques à l’utilisation de données géodésiques réelles.La première partie de ce travail se concentre sur le développement de stratégies afin d'évaluer le potentiel de l’assimilation de données. En particulier, le Filtre de Kalman d'Ensemble a été utilisé avec un modèle dynamique simple à deux chambres et de données géodésiques synthétiques pour aborder les points suivants : 1) suivi de l'évolution de la pression magmatique en profondeur et des déplacements de surface et estimation des paramètres statiques incertains du modèle, 2) assimilation des données GNSS et InSAR, 3) mise en évidence des avantages ou des inconvénients de l'EnKF par rapport à une technique d'inversion bayésienne. Les résultats montrent que l’EnKF fonctionne de manière satisfaisante et que l'assimilation de données semble prometteuse pour la surveillance en temps réel des volcans.La deuxième partie de la thèse est dédiée à l'application de la stratégie mise au point précédemment à l’exploitation des données GNSS inter-éruptives enregistrées de 2004 à 2011 au volcan Grímsvötn en Islande, afin de tester notre capacité à prédire la rupture d'une chambre magmatique en temps réel. Nous avons introduit ici le concept de ``niveau critique'' basé sur l’estimation de la probabilité d'une éruption à chaque pas de temps. Cette probabilité est définie à partir de la proportion d'ensembles de modèles qui dépassent un seuil critique, initialement assigné selon une distribution donnée. Nos résultats montrent que lorsque 25 +/- 1 % des ensembles du modèle ont dépassé la surpression critique une éruption est imminente. De plus, dans ce chapitre, nous élargissons également les tests synthétiques précédents en améliorant la stratégie EnKF d'assimilation des données géodésiques pour l'adapter à l’utilisation de données réelles en nombre limité. Les outils de diagnostiques couramment utilisés en assimilation de données sont mis en oeuvre et présentés.Enfin, je démontre qu'en plus de son intérêt pour prédire les éruptions volcaniques, l'assimilation séquentielle de données géodésiques basée sur l'utilisation de l'EnKF présente un potentiel unique pour apporter une information sur l'alimentation profonde du système volcanique. En utilisant le modèle dynamique à deux réservoirs pour le système de plomberie de Grímsvötn et en supposant une géométrie fixe et des propriétés magmatiques invariantes, nous mettons en évidence que l'apport basal en magma sous Grímsvötn diminue de 85 % au cours des 10 mois précédant le début de l'événement de rifting de Bárdarbunga. La perte d'au moins 0.016 km3 dans l'approvisionnement en magma de Grímsvötn est interprétée comme une conséquence de l'accumulation de magma sous Bárdarbunga et de l'alimentation consécutive de l'éruption Holuhraun à 41 km de distance. / Tracking magma emplacement at shallow depth as well as its migration towards the Earth's surface is crucial to forecast volcanic eruptions.With the recent advances in Interferometric Synthetic Aperture Radar (InSAR) imaging and the increasing number of continuous Global Navigation Satellite System (GNSS) networks recorded on volcanoes, it is now possible to provide continuous and spatially extensive evolution of surface displacements during inter-eruptive periods. For basaltic volcanoes, these measurements combined with simple dynamical models can be exploited to characterise and to constrain magma pressure building within one or several magma reservoirs, allowing better predictive information on the emplacement of magma at shallow depths. Data assimilation—a sequential time-forward process that best combines models and observations, sometimes a priori information based on error statistics, to predict the state of a dynamical system—has recently gained popularity in various fields of geoscience (e.g. ocean-weather forecasting, geomagnetism and natural resources exploration). In this dissertation, I present the very first application of data assimilation in volcanology from synthetic tests to analyzing real geodetic data.The first part of this work focuses on the development of strategies in order to test the applicability and to assess the potential of data assimilation, in particular, the Ensemble Kalman Filter (EnKF) using a simple two-chamber dynamical model (Reverso2014) and artificial geodetic data. Synthetic tests are performed in order to address the following: 1) track the magma pressure evolution at depth and reconstruct the synthetic ground surface displacements as well as estimate non-evolving uncertain model parameters, 2) properly assimilate GNSS and InSAR data, 3) highlight the strengths and weaknesses of EnKF in comparison with a Bayesian-based inversion technique (e.g. Markov Chain Monte Carlo). Results show that EnKF works well with the synthetic cases and there is a great potential in utilising data assimilation for real-time monitoring of volcanic unrest.The second part is focused on applying the strategy that we developed through synthetic tests in order to forecast the rupture of a magma chamber in real time. We basically explored the 2004-2011 inter-eruptive dataset at Grímsvötn volcano in Iceland. Here, we introduced the concept of “eruption zones” based on the evaluation of the probability of eruption at each time step estimated as the percentage of model ensembles that exceeded their failure overpressure values initially assigned following a given distribution. Our results show that when 25 +/- 1% of the model ensembles exceeded the failure overpressure, an actual eruption is imminent. Furthermore, in this chapter, we also extend the previous synthetic tests by further enhancing the EnKF strategy of assimilating geodetic data in order to adapt to real world problems such as, the limited amount of geodetic data available to monitor ice-covered active volcanoes. Common diagnostic tools in data assimilation are presented.Finally, I demonstrate that in addition to the interest of predicting volcanic eruptions, sequential assimilation of geodetic data on the basis of EnKF shows a unique potential to give insights into volcanic system roots. Using the two-reservoir dynamical model for Grímsvötn 's plumbing system and assuming a fixed geometry and constant magma properties, we retrieve the temporal evolution of the basal magma inflow beneath Grímsvötn that drops up to 85% during the 10 months preceding the initiation of the Bárdarbunga rifting event. The loss of at least 0.016 km3 in the magma supply of Grímsvötn is interpreted as a consequence of magma accumulation beneath Bárdarbunga and subsequent feeding of the Holuhraun eruption 41 km away.
140

Wildfire Modeling with Data Assimilation

Johnston, Andrew 14 December 2022 (has links)
Wildfire modeling is a complex, computationally costly endeavor, but with droughts worsening and fires burning across the western United States, obtaining accurate wildfire predictions is more important than ever. In this paper, we present a novel approach to wildfire modeling using data assimiliation. We model wildfire spread with a modification of the partial differential equation model described by Mandel et al. in their 2008 paper. Specifically, we replace some constant parameter values with geospatial functions of fuel type. We combine deep learning and remote sensing to obtain real-time data for the model and employ the Nelder-Mead method to recover optimal model parameters with data assimilation. We demonstrate the efficacy of this approach on computer-generated fires, as well as real fire data from the 2021 Dixie Fire in California. On generated fires, this approach resulted in an average Jaccard index of 0.996 between the predicted and actual fire perimeters and an average Kulczynski measure of 0.997. On data from the Dixie Fire, the average Jaccard index achieved was 0.48, and the average Kulczynski measure was 0.66.

Page generated in 0.126 seconds