• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 57
  • 13
  • 13
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 216
  • 216
  • 75
  • 39
  • 36
  • 35
  • 35
  • 26
  • 25
  • 19
  • 18
  • 18
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Machine Learning for Improvement of Ocean Data Resolution for Weather Forecasting and Climatological Research

Huda, Md Nurul 18 October 2023 (has links)
Severe weather events like hurricanes and tornadoes pose major risks globally, underscoring the critical need for accurate forecasts to mitigate impacts. While advanced computational capabilities and climate models have improved predictions, lack of high-resolution initial conditions still limits forecast accuracy. The Atlantic's "Hurricane Alley" region sees most storms arise, thus needing robust in-situ ocean data plus atmospheric profiles to enable precise hurricane tracking and intensity forecasts. Examining satellite datasets reveals radio occultation (RO) provides the most accurate 5-25 km altitude atmospheric measurements. However, below 5 km accuracy remains insufficient over oceans versus land areas. Some recent benchmark study e.g. Patil Iiyama (2022), and Wei Guan (2022) in their work proposed the use of deep learning models for sea surface temperature (SST) prediction in the Tohoku region with very low errors ranging from 0.35°C to 0.75°C and the root-mean-square error increases from 0.27°C to 0.53°C over the over the China seas respectively. The approach we have developed remains unparalleled in its domain as of this date. This research is divided into two parts and aims to develop a data driven satellite-informed machine learning system to combine high-quality but sparse in-situ ocean data with more readily available low-quality satellite data. In the first part of the work, a novel data-driven satellite-informed machine learning algorithm was implemented that combines High-Quality/Low-Coverage in-situ point ocean data (e.g. ARGO Floats) and Low-Quality/High-Coverage Satellite ocean Data (e.g. HYCOM, MODIS-Aqua, G-COM) and generated high resolution data with a RMSE of 0.58◦C over the Atlantic Ocean.The second part of the work a novel GNN algorithm was implemented on the Gulf of Mexico and showed it can successfully capture the complex interactions between the ocean and mimic the path of a ARGO floats with a RMSE of 1.40◦C. / Doctor of Philosophy / Severe storms like hurricanes and tornadoes are a major threat around the world. Accurate weather forecasts can help reduce their impacts. While climate models have improved predictions, lacking detailed initial conditions still limits forecast accuracy. The Atlantic's "Hurricane Alley" sees many storms form, needing good ocean and atmospheric data for precise hurricane tracking and strength forecasts. Studying satellite data shows radio occultation provides the most accurate 5-25 km high altitude measurements over oceans. But below 5 km accuracy remains insufficient versus over land. Recent research proposed using deep learning models for sea surface temperature prediction with low errors. Our approach remains unmatched in this area currently. This research has two parts. First, we developed a satellite-informed machine learning system combining limited high-quality ocean data with more available low-quality satellite data. This generated high resolution Atlantic Ocean data with an error of 0.58°C. Second, we implemented a new algorithm on the Gulf of Mexico, successfully modeling complex ocean interactions and hurricane paths with an error of 1.40°C. Overall, this research advances hurricane forecasting by combining different data sources through innovative machine learning techniques. More accurate predictions can help better prepare communities in hurricane-prone regions.
142

Relative Role of Uncertainty for Predictions of Future Southeastern U.S. Pine Carbon Cycling

Jersild, Annika Lee 06 July 2016 (has links)
Predictions of how forest productivity and carbon sequestration will respond to climate change are essential for making forest management decisions and adapting to future climate. However, current predictions can include considerable uncertainty that is not well quantified. To address the need for better quantification of uncertainty, we calculated and compared ecosystem model parameter, ecosystem model process, climate model, and climate scenario uncertainty for predictions of Southeastern U.S. pine forest productivity. We applied a data assimilation using Metropolis-Hastings Markov Chain Monte Carlo to fuse diverse datasets with the Physiological Principles Predicting Growth model. The spatially and temporally diverse data sets allowed for novel constraints on ecosystem model parameters and allowed for the quantification of uncertainty associated with parameterization and model structure (process). Overall, we found that the uncertainty is higher for parameter and process model uncertainty than the climate model uncertainty. We determined that climate change will result in a likely increase in terrestrial carbon storage and that higher emission scenarios increase the uncertainty in our predictions. In addition, we determined regional variations in biomass accumulation due to a response to the change in frost days, temperature, and vapor pressure deficit. Since the uncertainty associated with ecosystem model parameter and process uncertainty was larger than the uncertainty associated with climate predictions, our results indicate that better constraining parameters in ecosystem models and improving the mathematical structure of ecosystem models can improve future predictions of forest productivity and carbon sequestration. / Master of Science
143

Efficient Computational Tools for Variational Data Assimilation and Information Content Estimation

Singh, Kumaresh 23 August 2010 (has links)
The overall goals of this dissertation are to advance the field of chemical data assimilation, and to develop efficient computational tools that allow the atmospheric science community benefit from state of the art assimilation methodologies. Data assimilation is the procedure to combine data from observations with model predictions to obtain a more accurate representation of the state of the atmosphere. As models become more complex, determining the relationships between pollutants and their sources and sinks becomes computationally more challenging. The construction of an adjoint model ( capable of efficiently computing sensitivities of a few model outputs with respect to many input parameters ) is a difficult, labor intensive, and error prone task. This work develops adjoint systems for two of the most widely used chemical transport models: Harvard's GEOS-Chem global model and for Environmental Protection Agency's regional CMAQ regional air quality model. Both GEOS-Chem and CMAQ adjoint models are now used by the atmospheric science community to perform sensitivity analysis and data assimilation studies. Despite the continuous increase in capabilities, models remain imperfect and models alone cannot provide accurate long term forecasts. Observations of the atmospheric composition are now routinely taken from sondes, ground stations, aircraft, and satellites, etc. This work develops three and four dimensional variational data assimilation capabilities for GEOS-Chem and CMAQ which allow to estimate chemical states that best fit the observed reality. Most data assimilation systems to date use diagonal approximations of the background covariance matrix which ignore error correlations and may lead to inaccurate estimates. This dissertation develops computationally efficient representations of covariance matrices that allow to capture spatial error correlations in data assimilation. Not all observations used in data assimilation are of equal importance. Erroneous and redundant observations not only affect the quality of an estimate but also add unnecessary computational expense to the assimilation system. This work proposes techniques to quantify the information content of observations used in assimilation; information-theoretic metrics are used. The four dimensional variational approach to data assimilation provides accurate estimates but requires an adjoint construction, and uses considerable computational resources. This work studies versions of the four dimensional variational methods (Quasi 4D-Var) that use approximate gradients and are less expensive to develop and run. Variational and Kalman filter approaches are both used in data assimilation, but their relative merits and disadvantages in the context of chemical data assimilation have not been assessed. This work provides a careful comparison on a chemical assimilation problem with real data sets. The assimilation experiments performed here demonstrate for the first time the benefit of using satellite data to improve estimates of tropospheric ozone. / Ph. D.
144

Computationally efficient methods of water level and streamflow assimilation in distributed hydrological modeling / 分布型水文モデリングにおける水位と流量の計算効率の高い同化手法

Manoj, Khaniya 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25252号 / 工博第5211号 / 新制||工||1994(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 立川 康人, 教授 堀 智晴, 教授 佐山 敬洋 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
145

Multiscale data assimilation approaches and error characterisation applied to the inverse modelling ofatmospheric constituent emission fields / Assimilation de données multi-échelle et caractérisation des erreurs pour la modélisation inverse des sources de polluants atmosphériques

Koohkan, Mohammad Reza 20 December 2012 (has links)
Dans les études géophysiques, l'assimilation de données a pour but d'estimer l'état d'un système ou les paramètres d'un modèle physique de façon optimale. Pour ce faire, l'assimilation de données a besoin de trois types d'informations : des observations, un modèle physique/numérique et une description statistique de l'incertitude associée aux paramètres du système. Dans ma thèse, de nouvelles méthodes d'assimilation de données sont utilisées pour l'étude de la physico-chimie de l'atmosphère: (i) On y utilise de manière conjointe la méthode 4D-Var avec un modèle sous-maille statistique pour tenir compte des erreurs de représentativité. (ii) Des échelles multiples sont prises en compte dans la méthode d'estimation BLUE. (iii) Enfin, la méthode du maximum de vraisemblance est appliquée pour estimer des hyper-paramètres qui paramètrisent les erreurs à priori. Ces trois approches sont appliquées de manière spécifique à des problèmes de modélisation inverse des sources de polluant atmosphérique. Dans une première partie, la modélisation inverse est utilisée afin d'estimer les émissions de monoxyde de carbone sur un domaine représentant la France. Les stations du réseau d'observation considérées sont impactées par les erreurs de représentativité. Un modèle statistique sous-maille est introduit. Il est couplé au système 4D-Var afin de réduire les erreurs de représentativité. En particulier, les résultats de la modélisation inverse montrent que la méthode 4D-Var seule n'est pas adaptée pour gérer le problème de représentativité. Le système d'assimilation des données couplé conduit à une meilleure représentation de la variabilité de la concentration de CO avec une amélioration très significative des indicateurs statistiques. Dans une deuxième partie, on évalue le potentiel du réseau IMS (International Monitoring System) du CTBTO pour l'inversion d'une source accidentelle de radionucléides. Pour évaluer la performance du réseau, une grille multi-échelle adaptative pour l'espace de contrôle est optimisée selon un critère basé sur les degrés de liberté du signal (DFS). Les résultats montrent que plusieurs régions restent sous-observées par le réseau IMS. Dans la troisième et dernière partie, sont estimés les émissions de Composés Organiques Volatils (COVs) sur l'Europe de l'ouest. Cette étude d'inversion est faite sur la base des observations de 14 COVs extraites du réseau EMEP. L'évaluation des incertitudes des valeurs des inventaires d'émission et des erreurs d'observation sont faites selon le principe du maximum de vraisemblance. La distribution des inventaires d'émission a été supposée tantôt gaussienne et tantôt semi-normale. Ces deux hypothèses sont appliquées pour inverser le champs des inventaires d'émission. Les résultats de ces deux approches sont comparés. Bien que la correction apportée sur les inventaires est plus forte avec l'hypothèse Gaussienne que semi-normale, les indicateurs statistiques montrent que l'hypothèse de la distribution semi-normale donne de meilleurs résultats de concentrations que celle Gaussienne. / Data assimilation in geophysical sciences aims at optimally estimating the state of the system or some parameters of the system's physical model. To do so, data assimilation needs three types of information: observations and background information, a physical/numerical model, and some statistical description that prescribes uncertainties to each componenent of the system.In my dissertation, new methodologies of data assimilation are used in atmospheric chemistry and physics: the joint use of a 4D-Var with a subgrid statistical model to consistently account for representativeness errors, accounting for multiple scale in the BLUE estimation principle, and a better estimation of prior errors using objective estimation of hyperparameters. These three approaches will be specifically applied to inverse modelling problems focussing on the emission fields of tracers or pollutants. First, in order to estimate the emission inventories of carbon monoxide over France, in-situ stations which are impacted by the representativeness errors are used. A subgrid model is introduced and coupled with a 4D-Var to reduce the representativeness error. Indeed, the results of inverse modelling showed that the 4D-Var routine was not fit to handle the representativeness issues. The coupled data assimilation system led to a much better representation of theCO concentration variability, with a significant improvement of statistical indicators, and more consistent estimation of the CO emission inventory. Second, the evaluation of the potential of the IMS (International Monitoring System) radionuclide network is performed for the inversion of an accidental source. In order to assess the performance of the global network, a multiscale adaptive grid is optimised using a criterion based on degrees of freedom for the signal (DFS). The results show that several specific regions remain poorly observed by the IMS network. Finally, the inversion of the surface fluxes of Volatile Organic Compounds (VOC) are carried out over Western Europe using EMEP stations. The uncertainties of the background values of the emissions, as well as the covariance matrix of the observation errors, are estimated according to the maximum likelihood principle. The prior probability density function of the control parameters is chosen to be Gaussian or semi-normal distributed. Grid-size emission inventories are inverted under these two statistical assumptions. The two kinds of approaches are compared. With the Gaussian assumption, the departure between the posterior and the prior emission inventories is higher than when using the semi-normal assumption, but that method does not provide better scores than the semi-normal in a forecast experiment.
146

Assimilation de données satellites au limbe et au nadir dans un modèle de chimie-transport / Data assimilation studies in a chemistry transport model using limb and nadir satellite geometries

Barré, Jérôme 19 November 2012 (has links)
L'assimilation de données permet de combiner d'une manière optimale un modèle numérique décrivant l'évolution de la composition chimique de l'atmosphère et les mesures disponibles. Dans cette thèse, l'assimilation de données est utilisée afin de caractériser les distributions troposphériques et stratosphériques de l'ozone (O3) et du monoxyde de carbone (CO). Le Modèle de Chimie Transport (CTM) MOCAGE (MOdèle de Chimie Atmosphérique à Grande échelle) est utilisé dans une configuration à deux domaines imbriqués avec les résolutions de 2◦ (global) et de 0.2◦ (régional). La technique variationnelle du 3D-FGAT est utilisée pour toutes les études que constituent cette thèse. Nous avons évalué la complémentarité des mesures satellites au limbe et au nadir aujourd'hui disponibles pour la caractérisation de l'UTLS (Haute Troposphère Basse Stratosphère) en assimilant ces deux types de mesures simultanément. Nous nous sommes en particulier intéressé à la propagation de l'information provenant des mesures assimilés dans le modèle et plus particulièrement, aux impacts de l'assimilation de mesures stratosphérique d'ozone en troposphère aux moyennes latitudes. Les principaux objectifs de cette thèse ont été de montrer la valeur ajoutée de l'augmentation de la résolution modèle pour l'assimilation de données et les effets synergiques de l'assimilation combinée d'un sondeur au limbe et au nadir. Des développements au niveau du système d'assimilation en domaine imbriqué à 0.2◦ ont été effectués. L'assimilation des données dans le domaine global est maintenant prise en compte et les conditions aux bords provenant des champs assimilés montre un impact significatif sur le domaine imbriqué. Dans un premier temps, nous avons assimilé les profils d'ozone stratosphériques mesurés au limbe provenant de MLS (Microwave Limb Sounder) afin d'étudier deux cas d'échange entre la Stratosphère et la Troposphère (STE). / Data assimilation combines in an optimal way a numerical model describing the evolution of the atmospheric chemical composition and the available trace gases measurements. In this thesis, data assimilation is used to characterize the ozone (O3) and the carbon monoxide (CO) distributions in the stratosphere and in the troposphere. The Chemistry Transport Model (CTM) MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) is used in a configuration with two nested domains at 2◦ (global) and at 0.2◦ (regional). To perform the assimilation experiments a 3D-FGAT variational method is used. We evaluate the complementarity of limb and nadir measurements available at the present day at characterizing the UTLS (Upper Troposphere Lower Stratosphere) region by assimilating simultaneously the two type of measurements. We particularly focus on the impacts of data assimilation of stratospheric ozone measurements on troposphere and conversely of tropospheric data assimilation on stratosphere. Showing the added value of the increased horizontal resolution in the UTLS assimilated fields and the synergistic effects of limb and nadir assimilation were the main objectives of this work. Development in the assimilation system have been made in the assimilation system with the nested domain. Data assimilation in the global domain is now taken in account and the boundary condition from the assimilated fields show significant impacts on the regional domain. Firstly, we assimilate stratospheric ozone profiles from MLS (Microwave Limb Sounder) to investigate two Stratosphere-Troposphere Exchange (STE) case studies. .
147

Etude de représentations parcimonieuses des statistiques d'erreur d'observation pour différentes métriques. Application à l'assimilation de données images / Study of sparse representations of statistical observation error for different metrics. Application to image data assimilation

Chabot, Vincent 11 July 2014 (has links)
Les dernières décennies ont vu croître en quantité et en qualité les données satellites. Au fil des ans, ces observations ont pris de plus en plus d'importance en prévision numérique du temps. Ces données sont aujourd'hui cruciales afin de déterminer de manière optimale l'état du système étudié, et ce, notamment car elles fournissent des informations denses et de qualité dansdes zones peu observées par les moyens conventionnels. Cependant, le potentiel de ces séquences d'images est encore largement sous–exploitée en assimilation de données : ces dernières sont sévèrement sous–échantillonnées, et ce, en partie afin de ne pas avoir à tenir compte des corrélations d'erreurs d'observation.Dans ce manuscrit nous abordons le problème d'extraction, à partir de séquences d'images satellites, d'information sur la dynamique du système durant le processus d'assimilation variationnelle de données. Cette étude est menée dans un cadre idéalisé afin de déterminer l'impact d'un bruit d'observations et/ou d'occultations sur l'analyse effectuée.Lorsque le bruit est corrélé en espace, tenir compte des corrélations en analysant les images au niveau du pixel n'est pas chose aisée : il est nécessaire d'inverser la matrice de covariance d'erreur d'observation (qui se révèle être une matrice de grande taille) ou de faire des approximationsaisément inversibles de cette dernière. En changeant d'espace d'analyse, la prise en compte d'une partie des corrélations peut être rendue plus aisée. Dans ces travaux, nous proposons d'effectuer cette analyse dans des bases d'ondelettes ou des trames de curvelettes. En effet, un bruit corréléen espace n'impacte pas de la même manière les différents éléments composants ces familles. En travaillant dans ces espaces, il est alors plus aisé de tenir compte d'une partie des corrélations présentes au sein du champ d'erreur. La pertinence de l'approche proposée est présentée sur différents cas tests.Lorsque les données sont partiellement occultées, il est cependant nécessaire de savoir comment adapter la représentation des corrélations. Ceci n'est pas chose aisée : travailler avec un espace d'observation changeant au cours du temps rend difficile l'utilisation d'approximations aisément inversibles de la matrice de covariance d'erreur d'observation. Dans ces travaux uneméthode permettant d'adapter, à moindre coût, la représentations des corrélations (dans des bases d'ondelettes) aux données présentes dans chaque image est proposée. L'intérêt de cette approche est présenté dans un cas idéalisé. / Recent decades have seen an increase in quantity and quality of satellite observations . Over the years , those observations has become increasingly important in numerical weather forecasting. Nowadays, these datas are crucial in order to determine optimally the state of the studied system. In particular, satellites can provide dense observations in areas poorly observed by conventionnal networks. However, the potential of such observations is clearly under--used in data assimilation : in order to avoid the management of observation errors, thinning methods are employed in association to variance inflation.In this thesis, we adress the problem of extracting information on the system dynamic from satellites images data during the variationnal assimilation process. This study is carried out in an academic context in order to quantify the influence of observation noise and of clouds on the performed analysis.When the noise is spatially correlated, it is hard to take into account such correlations by working in the pixel space. Indeed, it is necessary to invert the observation error covariance matrix (which turns out to be very huge) or make an approximation easily invertible of such a matrix. Analysing the information in an other space can make the job easier. In this manuscript, we propose to perform the analysis step in a wavelet basis or a curvelet frame. Indeed, in those structured spaces, a correlated noise does not affect in the same way the differents structures. It is then easier to take into account part of errors correlations : a suitable approximation of the covariance matrix is made by considering only how each kind of element is affected by a correlated noise. The benefit of this approach is demonstrated on different academic tests cases.However, when some data are missing one has to address the problem of adapting the way correlations are taken into account. This work is not an easy one : working in a different observation space for each image makes the use of easily invertible approximate covariance matrix very tricky. In this work a way to adapt the diagonal hypothesis of the covariance matrix in a wavelet basis, in order to take into account that images are partially hidden, is proposed. The interest of such an approach is presented in an idealised case.
148

Réduction de modèles en thermo-mécanique / Reduced order modeling in thermo-mechanics

Benaceur, Amina 21 December 2018 (has links)
Cette thèse propose trois nouveaux développements de la méthode des bases réduites (RB) et de la méthode d'interpolation empirique (EIM) pour des problèmes non-linéaires. La première contribution est une nouvelle méthodologie, la méthode progressive RB-EIM (PREIM) dont l'objectif est de réduire le coût de la phase de construction du modèle réduit tout en maintenant une bonne approximation RB finale. L'idée est d'enrichir progressivement l'approximation EIM et l'espace RB, contrairement à l'approche standard où leurs constructions sont disjointes. La deuxième contribution concerne la RB pour les inéquations variationnelles avec contraintes non-linéaires. Nous proposons une combinaison RB-EIM pour traiter la contrainte. En outre, nous construisons une base réduite pour les multiplicateurs de Lagrange via un algorithme hiérarchique qui conserve la positivité des vecteurs cette base. Nous appliquons cette stratégie aux problèmes de contact élastique sans frottement pour les maillages non-coïncidents. La troisième contribution concerne la réduction de modèles avec assimilation de données. Une méthode dédiée a été introduite dans la littérature pour combiner un modèle numérique avec des mesures expérimentales. Nous élargissons son cadre d'application aux problèmes instationnaires en exploitant la méthode POD-greedy afin de construire des espaces réduits pour tout le transitoire temporel. Enfin, nous proposons un nouvel algorithme qui produit des espaces réduits plus représentatifs de la solution recherchée tout en minimisant le nombre de mesures nécessaires pour le problème réduit final / This thesis introduces three new developments of the reduced basis method (RB) and the empirical interpolation method (EIM) for nonlinear problems. The first contribution is a new methodology, the Progressive RB-EIM (PREIM) which aims at reducing the cost of the phase during which the reduced model is constructed without compromising the accuracy of the final RB approximation. The idea is to gradually enrich the EIM approximation and the RB space, in contrast to the standard approach where both constructions are separate. The second contribution is related to the RB for variational inequalities with nonlinear constraints. We employ an RB-EIM combination to treat the nonlinear constraint. Also, we build a reduced basis for the Lagrange multipliers via a hierarchical algorithm that preserves the non-negativity of the basis vectors. We apply this strategy to elastic frictionless contact for non-matching meshes. Finally, the third contribution focuses on model reduction with data assimilation. A dedicated method has been introduced in the literature so as to combine numerical models with experimental measurements. We extend the method to a time-dependent framework using a POD-greedy algorithm in order to build accurate reduced spaces for all the time steps. Besides, we devise a new algorithm that produces better reduced spaces while minimizing the number of measurements required for the final reduced problem
149

Assimilation de données et couplage d'échelles pour la simulation de la dispersion atmosphérique en milieu urbain

Nguyen, Chi Vuong 12 May 2017 (has links)
La surveillance de la qualité de l'air est actuellement effectuée avec des mesures de concentration et à partir d'outils de modélisation de la dispersion atmosphérique. Ces modèles numériques évaluent les concentrations des polluants avec une résolution spatio-temporelle plus fine que les mesures. Néanmoins, les estimations fournies par ces modèles sont moins précises que les mesures. Dans ce projet de recherche, nous avons étudié les approches de couplage d'échelles et d'assimilation de données pour améliorer les estimations fournies par le modèle de dispersion atmosphérique SIRANE, dédié à l'échelle urbaine. L'approche de couplage d'échelles consiste à déterminer les conditions aux limites d'une simulation à partir d'une autre simulation à plus grande échelle. Au cours de ce travail de thèse, nous avons analysé trois méthodes afin de coupler le modèle urbain SIRANE et le modèle à méso-échelle CHIMERE. Cette étude montre que ces méthodes permettent potentiellement d'estimer la qualité de l'air à l'échelle urbaine de manière plus satisfaisante que les modèles à méso-échelle (utilisés seuls). Cependant, elles n'améliorent pas forcément la modélisation des conditions aux limites d'une simulation à l'échelle urbaine et les estimations fournies par celles-ci. Cela est a priori lié au fait que les estimations fournies par le modèle CHIMERE ne sont pas suffisamment satisfaisantes sur notre cas d'étude. Il est néanmoins possible que ces méthodes améliorent les résultats à l'échelle urbaine en utilisant une simulation à l'échelle régionale de meilleure qualité. L'approche d'assimilation de données consiste à combiner les mesures et les données modélisées afin de déterminer la meilleure estimation de l'état d'un système. Durant cette thèse, nous avons étudié trois méthodes d'assimilation de données : la méthode de débiaisement, la méthode que nous avons nommée modulation de la contribution des sources et la méthode Best Linear Unbiased Estimator. Cette étude indique que ces méthodes permettent globalement d'améliorer les estimations fournies par le modèle SIRANE. L'étude de sensibilité vis-à-vis du nombre de mesures utilisées lors de l'assimilation de données indique qu'en général, plus ce nombre est élevé plus les résultats sont satisfaisants. Enfin, les résultats montrent que les performances statistiques associées à ces trois méthodes d'assimilation de données sont globalement comparables entre elles sur notre cas d'étude. / Air quality monitoring is currently carried out with concentration measurements and with atmospheric dispersion modeling tools. These numerical models evaluate pollutant concentrations with a finer spatio-temporal resolution than measurements. Nevertheless, the estimates provided by these models are less accurate than measurements. In this research project, we studied multiscale coupling and data assimilation approaches to improve the estimates provided by the SIRANE atmospheric dispersion model, dedicated to the urban scale. The multiscale coupling approach consists in determining the boundary conditions of a simulation from another simulation on a larger scale. In this thesis work, we analyzed three methods for coupling the SIRANE model with the CHIMERE mesoscale model. This study shows that these methods can potentially estimate the air quality at the urban scale more satisfactorily than the mesoscale models (used alone). However, they do not necessarily improve the modeling of the boundary conditions of a simulation at the urban scale and the estimates provided by them. This is a priori due to the fact that the estimates provided by the CHIMERE model are not sufficiently good on our case study. It is possible, however, that these methods improve the results at the urban scale by using a better simulation at the regional scale. The data assimilation approach consists of combining the measurements and the modelled data to determine the best estimate of the system state. During this thesis, we studied three data assimilation methods : the unbiased method, the method that we called source apportionment modulation, and the Best Linear Unbiased Estimator method. This study indicates that these methods generally improve the estimates provided by the SIRANE model. The sensitivity study on the number of measurements used during the data assimilation indicates that, in general, higher is this number, more satisfactory are the results. Finally, the results show that the statistical performances associated with these three data assimilation methods are globally comparable on our case study.
150

Couplage des observations spatiales dynamiques et biologiques pour la restitution des circulations océaniques : une approche conjointe par assimilation de données altimétriques et de traceurs / Coupling of dynamical and biological space observations for the control of ocean circulations : a joint approach through assimilation of altimeter and chlorophyll data

Gaultier, Lucile 16 October 2013 (has links)
Depuis quelques années, les observations spatiales des traceurs, comme la température de surface de l'océan (SST) ou la couleur de l'océan, ont révélé la présence de filaments à sous-mésoéchelle, qui ne peuvent être détectées par les satellites altimétriques. Ce travail de thèse explore la possibilité d'utiliser les informations dynamiques contenues dans les images traceur haute résolution pour compléter l'estimation de la dynamique océanique de surface effectuée par les satellites altimétriques. Pour ce faire, la méthode d'inversion développée est inspirée de l'assimilation de données images. A l'aide d'une fonction coût, on mesure la distance entre une image du flot dynamique et l'image des structures présentes sur le traceur. On a choisi pour cette étude d'utiliser le FSLE (Finite-Size Lyapunov Exponents) comme proxy image de la dynamique. Cette méthode est testée avec succès sur plusieurs cas test d'observations spatiales. Un modèle de processus couplé physique-biogéochimie ainsi qu'un modèle réaliste de la mer des Salomon sont utilisés pour estimer l'erreur associée à la méthode d'inversion et la pertinence de la correction effectuée. L'utilisation conjointe d'images traceurs et de données altimétriques présente un fort intérêt pour le contrôle de la circulation océanique. / High resolution sensors of tracers such as the Sea Surface Temperature or the Ocean Color reveal small structures at the submesoscale, which are not seen by altimetry. Therefore, this thesis explores the feasibility of using tracer information at the submesoscales to complement the control of ocean dynamic fields that emerge from altimeter data analysis at larger scales. To do so, an image data assimilation strategy (i.e. inversion of images) is developed in which a cost-function is built that minimizes the misfits between image of submesoscale flow structure and tracer images. In the present work, we have chosen as an image of submesoscale flow structure the Finite-Size Lyapunov Exponents (FSLE). This method has been successfully tested on several areas using tracer and altimetric observations from space A high resolution physico-biogeochemical coupled model of process and a high resolution realistic model of the Solomon sea have been used to assess the error associated with the inversion and the efficiency of the correction on the oceanic circulation. These results show the benefits of the joint use of tracer image and altimetric data for the control of ocean circulations.

Page generated in 0.0935 seconds