• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 104
  • 73
  • 25
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 436
  • 436
  • 94
  • 59
  • 49
  • 46
  • 46
  • 42
  • 42
  • 41
  • 39
  • 38
  • 34
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

WINGS CONCEPT: PRESENT AND FUTURE

Harris, Jim, Downing, Bob 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The Western Aeronautical Test Range (WATR) of NASA’s Dryden Flight Research Center (DFRC) is facing a challenge in meeting the technology demands of future flight mission projects. Rapid growth in technology for aircraft has resulted in complexity often surpassing the capabilities of the current WATR real-time processing and display systems. These current legacy systems are based on an architecture that is over a decade old. In response, the WATR has initiated the development of the WATR Integrated Next Generation System (WINGS). The purpose of WINGS is to provide the capability to acquire data from a variety of sources and process that data for subsequent analysis and display to Project Users in the WATR Mission Control Centers (MCCs) in real-time, near real-time and subsequent post-mission analysis. WINGS system architecture will bridge the continuing gap between new research flight test requirements and capability by distributing current system architectures to provide incremental and iterative system upgrades.
152

NETWORK DATA ACQUISITION AND PLAYBACK OF MULTIMEDIA DATA

Portnoy, Michael, Yang, Hsueh-Szu 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Traditional data acquisition systems have relied on physical connections between data sources and data receivers to handle the routing of acquired data streams. However, these systems grow exponentially in complexity as the number of data sources and receivers increases. New techniques are needed to address the ever increasing complexity of data acquisition. Furthermore, more advanced mechanisms are needed that move past the limitations of traditional data models that connect each data source to exactly one data receiver. This paper presents a software framework for the playback of multiplexed data acquired from a network acquisition system. This framework uses multicast technologies to connect data sources with multiple data receivers. The network acquisition system is briefly introduced before the software framework is discussed. Both the challenges and advantages involved with creating such a system are presented. Finally, this framework is applied to an aviation telemetry example.
153

Bulk Creation of Data Acquisition Parameters

Kupferschmidt, Benjamin 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / Modern data acquisition systems can be very time consuming to configure. The most time consuming aspect of configuring a data acquisition system is defining the measurements that the system will collect. Each measurement has to be uniquely identified in the system and the system needs to know what data the measurement will sample. Data acquisition systems are capable of sampling thousands of measurements in a single test flight. If all of the measurements are created by hand, it can take many hours to input all of the required measurements into the data acquisition system's setup software. This process can also be extremely tedious since many measurements are very similar. This paper will examine several possible solutions to the problem of rapidly creating large numbers of data acquisition measurements. If the list of measurements that need to be created already exists in an electronic format then the simplest approach would be to create an importer. The two main ways to import data are XML and comma separated value files. This paper will discuss the advantages and disadvantages of both approaches. In addition to importers, this paper will discuss a system that can be used to create large numbers of similar measurements very quickly. This system is ideally suited to MILSTD- 1553 and ARINC-429 bus data. It exploits the fact that most bus measurements are typically very similar to each other. For example, 1553 measurements typically differ only in terms of the command word and the selected data words. This system allows the user to specify ranges of data words for each command word. It can then create the measurements based on the user specified ranges.
154

A VERSATILE, SOFTWARE PROGRAMMABLE TELEMETRY SYSTEM FOR SATELLITE LAUNCH VEHICLES

Pillai, Sreelal Sreedharan, Sankarattil, Sreekumar, Padmanabhan, Padma, Rao, Vinod Padmanabha, Pillai, Sivasubramonia, Pillai, Madaswamy, Kollamparambil, Damodaran, Kurian, Thomas, Thirunavukkarasu, Chidambaram 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / We describe the design and development of a baseband telemetry system for multistage launch vehicles. The system is organized as a three tier one with remote data acquisition and processing units and a centralized control unit. The front-end Data Acquisition Units (DAUs) feature software programmable amplification, offset, filtering and sensor excitation and thus are flexible to interface directly to a variety of sensors used in launch vehicles. The Data Processing Units (DPUs) gather data from DAUs through a serial link compatible to RS-485 standards and carry out a variety of data analysis and data compression functions on selected channels under software control. The central Telemetry Control Unit (TCU) receives this data through a transformer isolated link compatible to MIL-1553B standards and performs the functions of data delay, data storage, onboard computer data monitoring, PCM formatting and pre-modulation signal conditioning to achieve miniaturization. The configuration and features of this telemetry system make its integration simple without compromising on data integrity and reliability and suit the adoption of futuristic technologies and concepts such as smart sensor networks, adaptability, reconfiguration and vehicle health management.
155

AN AIRCRAFT T&E METHODOLOGY BASED ON THE IEEE 1451 FAMILY OF STANDARDS

Fernandes, Ronald, Graul, Michael, Koola, Paul, Garner, Mark, Jones, Charles H. 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / This paper describes a methodology for aircraft T&E processes that exploits the advantages of the IEEE 1451 family of standards, including the design, implementation, test, and maintenance of instrumentation systems. The methodology includes the use of handheld and desktop applications that support the design of sensor networks, commissioning of sensors, sensor health monitoring, sensor plug-and-play capability, alarm management, and reports. The methodology incorporates the use of existing instrumentation support systems that have traditionally been used for aircraft T&E processes.
156

Integration of Smart Sensor Buses into Distributed Data Acquisition Systems

Dehmelt, Chris 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / As requirements for the amount of test data continues to increase, instrumentation engineers are under pressure to deploy data acquisition systems that reduce the amount of associated wiring and overall system complexity. Smart sensor buses have been long considered as one approach to address this issue by placing the appropriate signal conditioners close to their respective sensors and providing data back over a common bus. However, the inability to adequately synchronize the operation of the sensor bus to the system master, which is required to correlate analog data measurements, has precluded their use. The ongoing development and deployment of smart sensor buses has reached the phase in which integration into a larger data acquisition system environment must be considered. Smart sensor buses, such as IntelliBus™, have their own unique mode of operation based on a pre-determined sampling schedule, which however, is typically asynchronous to the operation of the (master or controller) data acquisition system and must be accounted for when attempting to synchronize the two systems. IRIG Chapter 4 type methods for inserting data into a format, as exemplified by the handling of MIL-STD-1553 data, could be employed, with the disadvantage of eliminating any knowledge as to when a particular measurement was sampled, unless it is time stamped (similar to the time stamping function that is provided to mark receipt of 1553 command words). This can result in excessive time data as each sensor bus can manage a large number of analog sensor inputs and multiple sensor buses must be accommodated by the data acquisition system. The paper provides an example, using the Boeing developed IntelliBus system and the L3 Communications - Telemetry East NetDAS system, of how correlated data can be acquired from a smart sensor bus as a major subsystem component of a larger integrated data acquisition system. The focus will be specifically on how the IntelliBus schedule can be synchronized to that of the NetDAS formatter. Sample formats will be provided along with a description of how a standalone NetDAS stack and an integrated NetDAS-IntelliBus system would be programmed to create the required output, taking into account the unique sampling characteristics of the sensor bus.
157

LEGACY SENSORS GO WIRELESS WITH IEEE P1451.5

Sinclair, Robert, Beech, Russell, Jones, Kevin, Jones, Charles H. 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / The wireless sensor concept has been hindered in the past by the large number of components needed to add the wireless transceiver feature and the additional power consumption needed for that feature. This has been resolved by incorporating all the wireless components into a single, low power modular circuit. Intelligence is being added to legacy sensors to make them Institute of Electrical and Electronics Engineers (IEEE) 1451.4 compatible with an element called a Sensor Identification Transducer Electronic Data Sheet (SITEDS), which contains the Transducer Electronics Data Sheet (TEDS) for that sensor. All the sensor interface parameters are automatically configured by a module called the Universal Smart Transducer Interface Module (USTIM) using the TEDS input from the respective sensor’s SITEDS. An IEEE P1451.5 compatible wireless interface can be incorporated into the SITEDS with the transceiver module giving the legacy sensor full wireless capability.
158

RESEARCH ENVIRONMENT FOR VEHICLE EMBEDDED ANALYSIS ON LINUX

Sorenson, Carl E., Yarbrough, Stanton K., Freudinger, Lawrence C., Gonia, Philip T. 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper overviews the Research Environment for Vehicle-Embedded Analysis on Linux (REVEAL), which is an open standards framework for the creation and deployment of realtime embedded and network distributed data systems. REVEAL is an ongoing project at NASA Dryden to evaluate the feasibility and benefits of using Linux in a modern generic web-enabled data system for measurement and telemetry network research, by actually building such a system. Novel features are described, such as XML based self-configuring, self-verifying and self-documenting software, and automatic XML metadata generation. The REVEAL architecture is described, including the core server and scheduler, and the management of system and user job processing. Performance, timing, determinism, and security issues are discussed, as well as the advantages and limitations of Linux.
159

Managing Instrumentation Networks

Pesciotta, Eric 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / As traditional data acquisition systems give way to network-based data acquisition systems a new approach to instrumentation configuration, management and analysis is required. Today, most flight test programs are supported by traditional instrumentation systems and software. Pockets of network-based systems exist but are typically entirely new, closed systems. Relatively soon, test articles will emerge with a mixture of equipment. The merger of traditional and networked instrumentation is inevitable. Bridging the gap in software tools is a non-trivial task. Network-based data acquisition systems provide expanded flexibility and capabilities well beyond traditional systems. Yet pre-existing equipment requires traditional configuration and analysis tools. Traditional flight test software alone cannot fully exploit the added benefits gained from such mergers. The need exists for a new type of flight test software that handles existing instrumentation while also providing additional features to manage a network of devices. Network management is new to flight test software but a thoughtful implementation can facilitate easy transition to these modern systems. This paper explores the technologies required to satisfy traditional system configuration as well as the less understood aspects of network management and analysis. Examples of software that meet or exceed these requirements are provided.
160

Considerations for Deploying IEEE 1588 V2 in Network-Centric Data Acquisition and Telemetry Systems

Newton, Todd, Grim, Evan, Moodie, Myron 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / Network-centric architectures continue to gain acceptance in data acquisition and telemetry systems. Though networks by nature impose non-deterministic transit time of data through a given link, the IEEE 1588 standard provides a means to remove this jitter by distributing time messages to the data acquisition units themselves. But like all standards, they evolve over time. The same is true with IEEE 1588, which is releasing its second version later this year. This paper discusses the challenges of the first version of the IEEE 1588 standard that Version 2 set out to address, potential challenges with Version 2, and interoperability issues that may arise when incorporating a mixture of Version 1 and Version 2 devices.

Page generated in 0.0927 seconds