• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 20
  • 11
  • 11
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 311
  • 311
  • 130
  • 107
  • 75
  • 68
  • 59
  • 40
  • 40
  • 38
  • 37
  • 36
  • 36
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Social Cybersecurity: Reshaping Security Through An Empirical Understanding of Human Social Behavior

Das, Sauvik 01 May 2017 (has links)
Despite substantial effort made by the usable security community at facilitating the use of recommended security systems and behaviors, much security advice is ignored and many security systems are underutilized. I argue that this disconnect can partially be explained by the fact that security behaviors have myriad unaccounted for social consequences. For example, by using two-factor authentication, one might be perceived as “paranoid”. By encrypting an e-mail correspondence, one might be perceived as having something to hide. Yet, to date, little theoretical work in usable security has applied theory from social psychology to understand how these social consequences affect people’s security behaviors. Likewise, little systems work in usable security has taken social factors into consideration. To bridge these gaps in literature and practice, I begin to build a theory of social cybersecurity and apply those theoretical insights to create systems that encourage better cybersecurity behaviors. First, through a series of interviews, surveys and a large-scale analysis of how security tools diffuse through the social networks of 1.5 million Facebook users, I empirically model how social influences affect the adoption of security behaviors and systems. In so doing, I provide some of the first direct evidence that security behaviors are strongly driven by social influence, and that the design of a security system strongly influences its potential for social spread. Specifically, security systems that are more observable, inclusive, and stewarded are positively affected by social influence, while those that are not are negatively affected by social influence. Based on these empirical results, I put forth two prescriptions: (i) creating socially grounded interface “nudges” that encourage better cybersecurity behaviors, and (ii) designing new, more socially intelligent end-user facing security systems. As an example of a social “nudge”, I designed a notification that informs Facebook users that their friends use optional security systems to protect their own accounts. In an experimental evaluation with 50,000 Facebook users, I found that this social notification was significantly more effective than a non-social control notification at attracting clicks to improve account security and in motivating the adoption of promoted, optional security tools. As an example of a socially intelligent cybersecurity system, I designed Thumprint: an inclusive authentication system that authenticates and identifies individual group members of a small, local group through a single, shared secret knock. Through my evaluations, I found that Thumprint is resilient to casual but motivated adversaries and that it can reliably differentiate multiple group members who share the same secret knock. Taken together, these systems point towards a future of socially intelligent cybersecurity that encourages better security behaviors. I conclude with a set of descriptive and prescriptive takeaways, as well as a set of open problems for future work. Concretely, this thesis provides the following contributions: (i) an initial theory of social cybersecurity, developed from both observational and experimental work, that explains how social influences affect security behaviors; (ii) a set of design recommendations for creating socially intelligent security systems that encourage better cybersecurity behaviors; (iii) the design, implementation and comprehensive evaluation of two such systems that leverage these design recommendations; and (iv) a reflection on how the insights uncovered in this work can be utilized alongside broader design considerations in HCI, security and design to create an infrastructure of useful, usable and socially intelligent cybersecurity systems.
72

Big Data a jejích potenciál pro bankovní sektor / Big Data and its perspective for the banking

Firsov, Vitaly January 2013 (has links)
In this thesis, I want to explore present (y. 2012/2013) modern trends in Business Intelligence and focus specifically on the rapidly evolving and, in my (and not only) opinion, a very perspective area of analysis and use of Big Data in large enterprises. The first, introductory part contains general information and the formal conditions as aims of the work, on whom the work is oriented and where it could be used. Then there are described inputs and outputs, structure, methods to achieve the objectives, potential benefits and limitations in this part. Because at the same time I work as a data analyst in the largest bank Czech Republic, Czech Savings Bank, I focused on the using of Big Data in the banking, because I think, that it is possible to achieve great benefits from collecting and analyzing Big Data in this area. The thesis itself is divided into 3 parts (chapters 2, 3-4, 5). In the second chapter you will learn, how developed the area of BI, how it evolved historically, what is BI today and what future is predicted to the BI by the experts like the world famous and respected analyst firm Gartner. In the third chapter I will focus on Big Data itself, what this term means, how Big Data differs from traditional business information available from ERP, ECM, DMS and other enterprise systems. You will learn about ways to store and process this type of data, as well as about the existing and applicable technologies, focused on Big Data analysis. In the fourth chapter I focus on the using of Big Data in business, information in this chapter will reflect my personal views on the potential of Big Data, based on my experience during practice in Czech Savings Bank. The final part will summarize this thesis, assess, how I fulfilled the objectives defined at the beginning, and express my opinion on perspective of the trend of Big Data analytics, based to the analyzed during the writing this thesis information and knowledge.
73

Climate change effects on urban water resources: An interdisciplinary approach to modeling urban water supply and demand

Renee L Obringer (8274048) 24 April 2020 (has links)
Urban populations are growing at unprecedented rates around the world, while simultaneously facing increasingly intense impacts of climate change, from sea level rise to extreme weather events. In the face of this concurrent urbanization and climate change, it is imperative that cities improve their resilience to a multitude of stressors. A key aspect of urban resilience to climate change is ensuring that there is enough drinking water available to service the city, especially given the projections of more frequent and intense droughts in some areas. However, the study of climate impacts on urban water resources is fairly nascent and many gaps remain. In this dissertation, I aim to begin to close some of those gaps by adopting an interdisciplinary approach to studying water availability. First, I focus on urban water supply, and in particular, reservoir operations. I employ a variety of methods, ranging from data science techniques to traditional hydrological models, to predict the reservoir levels under a variety of climate conditions. Following the analysis of water supply, I shift focus to urban water demand. Here, I include interconnected systems, such as electricity, to evaluate and characterize the impact of climate on water demand and the benefit of considering system interconnectivities. Additionally, I present an analysis on the projection of water and electricity demand into the future, based on representative concentration pathways of CO<sub>2</sub>. Finally, I focus on the human dimension to the demand studies. By studying the social norms surrounding water conservation in urban areas, as well as the demographics, I built a predictive model to estimate monthly water consumption at the census tract-level. Through these interdisciplinary studies, I have made progress in filling knowledge gaps related to the impact of climate change on urban water resources, as well as the impact of people on these water resources.
74

SunDown: Model-driven Per-Panel Solar Anomaly Detection for Residential Arrays

Feng, Menghong 15 July 2020 (has links)
There has been significant growth in both utility-scale and residential-scale solar installa- tions in recent years, driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that are professionally managed and maintained, smaller residential- scale installations often lack sensing and instrumentation for performance monitoring and fault detection. As a result, faults may go undetected for long periods of time, resulting in generation and revenue losses for the homeowner. In this thesis, we present SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does not require any new sensors for its fault detection and instead uses a model-driven ap- proach that leverages correlations between the power produced by adjacent panels to de- tect deviations from expected behavior. SunDown can handle concurrent faults in multiple panels and perform anomaly classification to determine probable causes. Using two years of solar generation data from a real home and a manually generated dataset of multiple solar faults, we show that our approach has a MAPE of 2.98% when predicting per-panel output. Our results also show that SunDown is able to detect and classify faults, including from snow cover, leaves and debris, and electrical failures with 99.13% accuracy, and can detect multi- ple concurrent faults with 97.2% accuracy.
75

Ethics in Data Science: Implementing a Harm Prevention Framework

Buffenbarger, Lauren 28 June 2021 (has links)
No description available.
76

Manifold Learning with Tensorial Network Laplacians

Sanders, Scott 01 August 2021 (has links)
The interdisciplinary field of machine learning studies algorithms in which functionality is dependent on data sets. This data is often treated as a matrix, and a variety of mathematical methods have been developed to glean information from this data structure such as matrix decomposition. The Laplacian matrix, for example, is commonly used to reconstruct networks, and the eigenpairs of this matrix are used in matrix decomposition. Moreover, concepts such as SVD matrix factorization are closely connected to manifold learning, a subfield of machine learning that assumes the observed data lie on a low-dimensional manifold embedded in a higher-dimensional space. Since many data sets have natural higher dimensions, tensor methods are being developed to deal with big data more efficiently. This thesis builds on these ideas by exploring how matrix methods can be extended to data presented as tensors rather than simply as ordinary vectors.
77

Neural Network Pruning for ECG Arrhythmia Classification

Labarge, Isaac E 01 April 2020 (has links)
Convolutional Neural Networks (CNNs) are a widely accepted means of solving complex classification and detection problems in imaging and speech. However, problem complexity often leads to considerable increases in computation and parameter storage costs. Many successful attempts have been made in effectively reducing these overheads by pruning and compressing large CNNs with only a slight decline in model accuracy. In this study, two pruning methods are implemented and compared on the CIFAR-10 database and an ECG arrhythmia classification task. Each pruning method employs a pruning phase interleaved with a finetuning phase. It is shown that when performing the scale-factor pruning algorithm on ECG, finetuning time can be expedited by 1.4 times over the traditional approach with only 10% of expensive floating-point operations retained, while experiencing no significant impact on accuracy.
78

Řízení expanze e-commerce / E-commerce Expansion Management

Sojka, David January 2021 (has links)
This master thesis pursues a business model of an online store's international expansion in Europe. According to theoretical backgrounds, it evaluates the state of currently used methods of today's expansion strategy. Further, a management plan for systematic expansion is being proposed along with risk mitigations, stabilization of current international operations, and a proposal of a technological-information solution for data science.
79

Assessing Influential Users in Live Streaming Social Networks

January 2019 (has links)
abstract: Live streaming has risen to significant popularity in the recent past and largely this live streaming is a feature of existing social networks like Facebook, Instagram, and Snapchat. However, there does exist at least one social network entirely devoted to live streaming, and specifically the live streaming of video games, Twitch. This social network is unique for a number of reasons, not least because of its hyper-focus on live content and this uniqueness has challenges for social media researchers. Despite this uniqueness, almost no scientific work has been performed on this public social network. Thus, it is unclear what user interaction features present on other social networks exist on Twitch. Investigating the interactions between users and identifying which, if any, of the common user behaviors on social network exist on Twitch is an important step in understanding how Twitch fits in to the social media ecosystem. For example, there are users that have large followings on Twitch and amass a large number of viewers, but do those users exert influence over the behavior of other user the way that popular users on Twitter do? This task, however, will not be trivial. The same hyper-focus on live content that makes Twitch unique in the social network space invalidates many of the traditional approaches to social network analysis. Thus, new algorithms and techniques must be developed in order to tap this data source. In this thesis, a novel algorithm for finding games whose releases have made a significant impact on the network is described as well as a novel algorithm for detecting and identifying influential players of games. In addition, the Twitch network is described in detail along with the data that was collected in order to power the two previously described algorithms. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2019
80

Data analytics and optimization methods in biomedical systems: from microbes to humans

Wang, Taiyao 19 May 2020 (has links)
Data analytics and optimization theory are well-developed techniques to describe, predict and optimize real-world systems, and they have been widely used in engineering and science. This dissertation focuses on applications in biomedical systems, ranging from the scale of microbial communities to problems relating to human disease and health care. Starting from the microbial level, the first problem considered is to design metabolic division of labor in microbial communities. Given a number of microbial species living in a community, the starting point of the analysis is a list of all metabolic reactions present in the community, expressed in terms of the metabolite proportions involved in each reaction. Leveraging tools from Flux Balance Analysis (FBA), the problem is formulated as a Mixed Integer Program (MIP) and new methods are developed to solve large scale instances. The strategies found reveal a large space of nuanced and non-intuitive metabolic division of labor opportunities, including, for example, splitting the Tricarboxylic Acid Cycle (TCA) cycle into two separate halves. More broadly, the landscape of possible 1-, 2-, and 3-strain solutions is systematically mapped at increasingly tight constraints on the number of allowed reactions. The second problem addressed involves the prediction and prevention of short-term (30-day) hospital re-admissions. To develop predictive models, a variety of classification algorithms are adapted and coupled with robust (regularized) learning and heuristic feature selection approaches. Using real, large datasets, these methods are shown to reliably predict re-admissions of patients undergoing general surgery, within 30-days of discharge. Beyond predictions, a novel prescriptive method is developed that computes specific control actions with the effect of altering the outcome. This method, termed Prescriptive Support Vector Machines (PSVM), is based on an underlying SVM classifier. Applied to the hospital re-admission data, it is shown to reduce 30-day re-admissions after surgery through better control of the patient’s pre-operative condition. Specifically, using the new method the patient’s pre-operative hematocrit is regulated through limited blood transfusion. In the last problem in this dissertation, a framework for parameter estimation in Regularized Mixed Linear Regression (MLR) problems is developed. In the specific MLR setting considered, training data are generated from a mixture of distinct linear models (or clusters) and the task is to identify the corresponding coefficient vectors. The problem is formulated as a Mixed Integer Program (MIP) subject to regularization constraints on the coefficient vectors. A number of results on the convergence of parameter estimates for MLR are established. In addition, experimental prediction results are presented comparing the prediction algorithm with mean absolute error regression and random forest regression, in terms of both accuracy and interpretability.

Page generated in 0.0516 seconds