Spelling suggestions: "subject:"datagenerering"" "subject:"banagenerering""
1 |
Generative Adversarial Networks for Vehicle Trajectory Generation / Generativa Motståndarnätverk för Generering av FordonsbanaBajarunas, Kristupas January 2022 (has links)
Deep learning models heavily rely on an abundance of data, and their performance is directly affected by data availability. In mobility pattern modeling, problems, such as next location prediction or flow prediction, are commonly solved using deep learning approaches. Despite advances in modeling techniques, complications arise when acquiring mobility data is limited by geographic factors and data protection laws. Generating highquality synthetic data is one of the solutions to get around at times when information is scarce. Trajectory generation is concerned with generating trajectories that can reproduce the spatial and temporal characteristics of the underlying original mobility patterns. The task of this project was to evaluate Generative Adversarial Network (GAN) capabilities to generate synthetic vehicle trajectory data. We extend the methodology of previous research on trajectory generation by introducing conditional trajectory duration labels and a model pretraining mechanism. The evaluation of generated trajectories consisted of a two-fold analysis. We perform qualitative analysis by visually inspecting generated trajectories and quantitative analysis by calculating the statistical distance between synthetic and original data distributions. The results indicate that extending the previous GAN methodology allows the novel model to generate trajectories statistically closer to the original data distribution. Nevertheless, a statistical base model has the best generative performance and is the only model to generate visually plausible results. We accredit the superior performance of the statistical base model to the highly predictive nature of vehicle trajectories, which must follow the road network and have the tendency to follow minimum distance routes. This research considered only one type of GAN-based model, and further research should explore other architecture alternatives to understand the potential of GAN-based models fully / Modeller för djupinlärning är starkt beroende av ett överflöd av data, och derasprestanda påverkas direkt av datatillgänglighet. I mobilitetsmönstermodellering löses problem, såsom nästa platsförutsägelse eller flödesprediktion,vanligtvis med hjälp av djupinlärningsmetoder. Trots framsteg inommodelleringsteknik uppstår komplikationer när inhämtning av mobilitetsdatabegränsas av geografiska faktorer och dataskyddslagar. Att generera syntetiskdata av hög kvalitet är en av lösningarna för att ta sig runt i tider dåinformationen är knapp. Bangenerering handlar om att generera banorsom kan reproducera de rumsliga och tidsmässiga egenskaperna hos deunderliggande ursprungliga rörlighetsmönstren. Uppgiften för detta projektvar att utvärdera GAN-kapaciteten för att generera syntetiska fordonsbanor. Viutökar metodiken för tidigare forskning om banagenerering genom att introducera villkorliga etiketter för banalängd och en modellförträningsmekanism.Utvärderingen av genererade banor bestod av en tvåfaldig analys. Viutför kvalitativ analys genom att visuellt inspektera genererade banor ochkvantitativ analys genom att beräkna det statistiska avståndet mellan syntetiskaoch ursprungliga datafördelningar. Resultaten indikerar att en utvidgningav den tidigare GAN-metoden tillåter den nya modellen att generera banorstatistiskt närmare den ursprungliga datadistributionen. Ändå har en statistiskbasmodell den bästa generativa prestandan och är den enda modellen somgenererar visuellt rimliga resultat. Vi ackrediterar den statistiska basmodellensöverlägsna prestanda till den mycket prediktiva karaktären hos fordonsbanor,som måste följa vägnätet och ha en tendens att följa minimiavståndsrutter.Denna forskning övervägde endast en typ av GAN-baserad modell, ochytterligare forskning bör utforska andra arkitekturalternativ för att förståpotentialen hos GAN-baserade modeller fullt ut
|
2 |
Synthetic data generation for domain adaptation of a retriever-reader Question Answering system for the Telecom domain : Comparing dense embeddings with BM25 for Open Domain Question Answering / Syntetisk data genering för domänadaptering av ett retriever-readerbaserat frågebesvaringssystem för telekomdomänen : En jämförelse av dense embeddings med BM25 för Öpen Domän frågebesvaringDöringer Kana, Filip January 2023 (has links)
Having computer systems capable of answering questions has been a goal within Natural Language Processing research for many years. Machine Learning systems have recently become increasingly proficient at this task with large language models obtaining state-of-the-art performance. Retriever-reader architectures have become a powerful approach for building systems that enable users to enter questions and get factual answers from a corpus of documents. This architecture uses a retriever component that fetches the most relevant documents and a reader which in turn extracts the answer from the documents. These systems commonly use transformer-based models for both components, which have been fine-tuned on a general domain of documents, such as Wikipedia. However, the performance of such systems on new domains, with different vocabularies, can be lacking. Furthermore, new domains of, for instance, company-specific documents often lack annotated data which makes training new models cumbersome. This thesis investigated how a retriever-reader-based architecture can be adapted to a corpus of Telecom documents by generating question-answer data using a large generative language model, GPT3.5. Also, it compared the usage of a dense retriever using BERT to a BM25-based retriever on the domain. Findings suggest that generating training data can be an effective approach for fine-tuning a dense retriever, increasing the Top-K retrieval accuracy by 20 points for k = 10, compared to a dense retriever fine-tuned on Wikipedia. Additionally, it is found that the sparse retriever outperforms the best dense retriever, although, there is reason to believe that the structure of the test dataset could influence this. Finally, the results also indicate that the performance of the reader is not improved by the generated data although future work is needed to draw better conclusions. / Datorsystem som kan svara på frågor har varit ett mål inom forskningsfältet naturlig språkbehandling i många år. System som använder sig av maskininlärning, så som stora språkmodeller har under de senaste åren uppnått hög prestanda. Att använda sig av en så kallad retriever-reader arkitektur har blivit ett kraftfullt tillvägagångssätt för att bygga system som gör det möjligt för användare att ställa frågor och få faktabaserade svar hämtade från en korpus av dokument. Denna arkitektur använder en retriever som hämtar den mest relevanta informationen och en reader som sedan extraherar ett svar från den hämtade informationen. Dessa system använder vanligtvis transformer-baserade modeller för båda komponenterna, som har tränats på en allmän domän som t.ex., Wikipedia. Dock kan prestandan hos dessa system vara bristfällig när de appliceras på mer specifika domäner med andra ordförråd. Dessutom saknas ofta annoterad data för mer specifika domäner, som exempelvis företagsdokument, vilket gör det svårt att träna modeller på dessa områden. I denna avhandling undersöktes hur en retriever-reader arkitektur kan appliceras på en korpus telekomdokument genom att generera data bestående av frågor och tillhörande svar, genom att använda en stor generativ språkmodell, GPT3.5. Rapporten jämförde även användandet av en BERT-baserad retriever med en BM25-baserad retriever för denna domän. Resultaten tyder på att generering av träningsdata kan vara ett effektivt tillvägagångssätt för att träna en BERT-baserad retriever. Den tränade modellen hade 20 poäng högre noggranhet för måttet Top-K retrieval vid k = 10 jämfört med samma model tränad på data från Wikipedia. Resultaten visade även att en BM25-baserad retriever hade högre noggranhet än den bästa BERT-baserade retrievern som tränats. Dock kan detta bero på datasetets utformning. Slutligen visade resultaten även att prestandan hos en tränad reader inte blev bättre genom att träna på genererad data men denna slutsats kräver framtida arbete för att undersökas mer noggrant.
|
3 |
Generation of Synthetic Data with Generative Adversarial NetworksGarcia Torres, Douglas January 2018 (has links)
The aim of synthetic data generation is to provide data that is not real for cases where the use of real data is somehow limited. For example, when there is a need for larger volumes of data, when the data is sensitive to use, or simply when it is hard to get access to the real data. Traditional methods of synthetic data generation use techniques that do not intend to replicate important statistical properties of the original data. Properties such as the distribution, the patterns or the correlation between variables, are often omitted. Moreover, most of the existing tools and approaches require a great deal of user-defined rules and do not make use of advanced techniques like Machine Learning or Deep Learning. While Machine Learning is an innovative area of Artificial Intelligence and Computer Science that uses statistical techniques to give computers the ability to learn from data, Deep Learning is a closely related field based on learning data representations, which may serve useful for the task of synthetic data generation. This thesis focuses on one of the most interesting and promising innovations of the last years in the Machine Learning community: Generative Adversarial Networks. An approach for generating discrete, continuous or text synthetic data with Generative Adversarial Networks is proposed, tested, evaluated and compared with a baseline approach. The results prove the feasibility and show the advantages and disadvantages of using this framework. Despite its high demand for computational resources, a Generative Adversarial Networks framework is capable of generating quality synthetic data that preserves the statistical properties of a given dataset. / Syftet med syntetisk datagenerering är att tillhandahålla data som inte är verkliga i fall där användningen av reella data på något sätt är begränsad. Till exempel, när det finns behov av större datamängder, när data är känsliga för användning, eller helt enkelt när det är svårt att få tillgång till den verkliga data. Traditionella metoder för syntetiska datagenererande använder tekniker som inte avser att replikera viktiga statistiska egenskaper hos de ursprungliga data. Egenskaper som fördelningen, mönstren eller korrelationen mellan variabler utelämnas ofta. Dessutom kräver de flesta av de befintliga verktygen och metoderna en hel del användardefinierade regler och använder inte avancerade tekniker som Machine Learning eller Deep Learning. Machine Learning är ett innovativt område för artificiell intelligens och datavetenskap som använder statistiska tekniker för att ge datorer möjlighet att lära av data. Deep Learning ett närbesläktat fält baserat på inlärningsdatapresentationer, vilket kan vara användbart för att generera syntetisk data. Denna avhandling fokuserar på en av de mest intressanta och lovande innovationerna från de senaste åren i Machine Learning-samhället: Generative Adversarial Networks. Generative Adversarial Networks är ett tillvägagångssätt för att generera diskret, kontinuerlig eller textsyntetisk data som föreslås, testas, utvärderas och jämförs med en baslinjemetod. Resultaten visar genomförbarheten och visar fördelarna och nackdelarna med att använda denna metod. Trots dess stora efterfrågan på beräkningsresurser kan ett generativt adversarialnätverk skapa generell syntetisk data som bevarar de statistiska egenskaperna hos ett visst dataset.
|
4 |
Energy-Efficient Private Forecasting on Health Data using SNNs / Energieffektiv privat prognos om hälsodata med hjälp av SNNsDi Matteo, Davide January 2022 (has links)
Health monitoring devices, such as Fitbit, are gaining popularity both as wellness tools and as a source of information for healthcare decisions. Predicting such wellness goals accurately is critical for the users to make informed lifestyle choices. The core objective of this thesis is to design and implement such a system that takes energy consumption and privacy into account. This research is modelled as a time-series forecasting problem that makes use of Spiking Neural Networks (SNNs) due to their proven energy-saving capabilities. Thanks to their design that closely mimics natural neural networks (such as the brain), SNNs have the potential to significantly outperform classic Artificial Neural Networks in terms of energy consumption and robustness. In order to prove our hypotheses, a previous research by Sonia et al. [1] in the same domain and with the same dataset is used as our starting point, where a private forecasting system using Long short-term memory (LSTM) is designed and implemented. Their study also implements and evaluates a clustering federated learning approach, which fits well the highly distributed data. The results obtained in their research act as a baseline to compare our results in terms of accuracy, training time, model size and estimated energy consumed. Our experiments show that Spiking Neural Networks trades off accuracy (2.19x, 1.19x, 4.13x, 1.16x greater Root Mean Square Error (RMSE) for macronutrients, calories burned, resting heart rate, and active minutes respectively), to grant a smaller model (19% less parameters an 77% lighter in memory) and a 43% faster training. Our model is estimated to consume 3.36μJ per inference, which is much lighter than traditional Artificial Neural Networks (ANNs) [2]. The data recorded by health monitoring devices is vastly distributed in the real-world. Moreover, with such sensitive recorded information, there are many possible implications to consider. For these reasons, we apply the clustering federated learning implementation [1] to our use-case. However, it can be challenging to adopt such techniques since it can be difficult to learn from data sequences that are non-regular. We use a two-step streaming clustering approach to classify customers based on their eating and exercise habits. It has been shown that training different models for each group of users is useful, particularly in terms of training time; however this is strongly dependent on the cluster size. Our experiments conclude that there is a decrease in error and training time if the clusters contain enough data to train the models. Finally, this study addresses the issue of data privacy by using state of-the-art differential privacy. We apply e-differential privacy to both our baseline model (trained on the whole dataset) and our federated learning based approach. With a differential privacy of ∈= 0.1 our experiments report an increase in the measured average error (RMSE) of only 25%. Specifically, +23.13%, 25.71%, +29.87%, 21.57% for macronutrients (grams), calories burned (kCal), resting heart rate (beats per minute (bpm), and minutes (minutes) respectively. / Hälsoövervakningsenheter, som Fitbit, blir allt populärare både som friskvårdsverktyg och som informationskälla för vårdbeslut. Att förutsäga sådana välbefinnandemål korrekt är avgörande för att användarna ska kunna göra välgrundade livsstilsval. Kärnmålet med denna avhandling är att designa och implementera ett sådant system som tar hänsyn till energiförbrukning och integritet. Denna forskning är modellerad som ett tidsserieprognosproblem som använder sig av SNNs på grund av deras bevisade energibesparingsförmåga. Tack vare deras design som nära efterliknar naturliga neurala nätverk (som hjärnan) har SNNs potentialen att avsevärt överträffa klassiska artificiella neurala nätverk när det gäller energiförbrukning och robusthet. För att bevisa våra hypoteser har en tidigare forskning av Sonia et al. [1] i samma domän och med samma dataset används som utgångspunkt, där ett privat prognossystem som använder LSTM designas och implementeras. Deras studie implementerar och utvärderar också en klustringsstrategi för federerad inlärning, som passar väl in på den mycket distribuerade data. Resultaten som erhållits i deras forskning fungerar som en baslinje för att jämföra våra resultat vad gäller noggrannhet, träningstid, modellstorlek och uppskattad energiförbrukning. Våra experiment visar att Spiking Neural Networks byter ut precision (2,19x, 1,19x, 4,13x, 1,16x större RMSE för makronäringsämnen, förbrända kalorier, vilopuls respektive aktiva minuter), för att ge en mindre modell ( 19% mindre parametrar, 77% lättare i minnet) och 43% snabbare träning. Vår modell beräknas förbruka 3, 36μJ, vilket är mycket lättare än traditionella ANNs [2]. Data som registreras av hälsoövervakningsenheter är enormt spridda i den verkliga världen. Dessutom, med sådan känslig registrerad information finns det många möjliga konsekvenser att överväga. Av dessa skäl tillämpar vi klustringsimplementeringen för federerad inlärning [1] på vårt användningsfall. Det kan dock vara utmanande att använda sådana tekniker eftersom det kan vara svårt att lära sig av datasekvenser som är oregelbundna. Vi använder en tvåstegs streaming-klustringsmetod för att klassificera kunder baserat på deras mat- och träningsvanor. Det har visat sig att det är användbart att träna olika modeller för varje grupp av användare, särskilt när det gäller utbildningstid; detta är dock starkt beroende av klustrets storlek. Våra experiment drar slutsatsen att det finns en minskning av fel och träningstid om klustren innehåller tillräckligt med data för att träna modellerna. Slutligen tar denna studie upp frågan om datasekretess genom att använda den senaste differentiell integritet. Vi tillämpar e-differentiell integritet på både vår baslinjemodell (utbildad på hela datasetet) och vår federerade inlärningsbaserade metod. Med en differentiell integritet på ∈= 0.1 rapporterar våra experiment en ökning av det uppmätta medelfelet (RMSE) på endast 25%. Specifikt +23,13%, 25,71%, +29,87%, 21,57% för makronäringsämnen (gram), förbrända kalorier (kCal), vilopuls (bpm och minuter (minuter).
|
5 |
Analysis and comparison of interfacing, data generation and workload implementation in BigDataBench 4.0 and Intel HiBench 7.0Barosen, Alexander, Dalin, Sadok January 2018 (has links)
One of the major challenges in Big Data is the accurate and meaningful assessment of system performance. Unlike other systems, minor differences in efficiency can escalate to large differences in costs and power consumption. While there are several tools on the marketplace for measuring the performance of Big Data systems, few of them have been explored in-depth. This report investigated the interfacing, data generation and workload implementations of two Big Data benchmarking suites, BigDataBench and Hibench. The purpose of the study was to establish the capabilities of each tool with regards to interfacing, data generation and workload implementation. An exploratory and qualitative approach was used to gather information and analyze each benchmarking tool. Source code, documentation, and reports published by the developers were used as information sources. The results showed that BigDataBench and HiBench were designed similarly with regards to interfacing and data flow during the execution of a workload with the exception of streaming workloads. BigDataBench provided for more realistic data generation while the data generation for HiBench was easier to control. With regards to workload design, the workloads in BigDataBench were designed to be applicable to multiple frameworks while the workloads in HiBench were focused on the Hadoop family. In conclusion, neither of benchmarking suites was superior to the other. They were both designed for different purposes and should be applied on a case-by-case basis. / En av de stora utmaningarna i Big Data är den exakta och meningsfulla bedömningen av systemprestanda. Till skillnad från andra system kan mindre skillnader i effektivitet eskalera till stora skillnader i kostnader och strömförbrukning. Medan det finns flera verktyg på marknaden för att mäta prestanda för Big Data-system, har få av dem undersökts djupgående. I denna rapport undersöktes gränssnittet, datagenereringen och arbetsbelastningen av två Big Data benchmarking-sviter, BigDataBench och HiBench. Syftet med studien var att fastställa varje verktygs kapacitet med hänsyn till de givna kriterierna. Ett utforskande och kvalitativt tillvägagångssätt användes för att samla information och analysera varje benchmarking verktyg. Källkod, dokumentation och rapporter som hade skrivits och publicerats av utvecklarna användes som informationskällor. Resultaten visade att BigDataBench och HiBench utformades på samma sätt med avseende på gränssnitt och dataflöde under utförandet av en arbetsbelastning med undantag för strömmande arbetsbelastningar. BigDataBench tillhandahöll mer realistisk datagenerering medan datagenerering för HiBench var lättare att styra. När det gäller arbetsbelastningsdesign var arbetsbelastningen i BigDataBench utformad för att kunna tillämpas på flera ramar, medan arbetsbelastningen i HiBench var inriktad på Hadoop-familjen. Sammanfattningsvis var ingen av benchmarkingssuperna överlägsen den andra. De var båda utformade för olika ändamål och bör tillämpas från fall till fall.
|
6 |
Multivariate Time Series Data Generation using Generative Adversarial Networks : Generating Realistic Sensor Time Series Data of Vehicles with an Abnormal Behaviour using TimeGANNord, Sofia January 2021 (has links)
Large datasets are a crucial requirement to achieve high performance, accuracy, and generalisation for any machine learning task, such as prediction or anomaly detection, However, it is not uncommon for datasets to be small or imbalanced since gathering data can be difficult, time-consuming, and expensive. In the task of collecting vehicle sensor time series data, in particular when the vehicle has an abnormal behaviour, these struggles are present and may hinder the automotive industry in its development. Synthetic data generation has become a growing interest among researchers in several fields to handle the struggles with data gathering. Among the methods explored for generating data, generative adversarial networks (GANs) have become a popular approach due to their wide application domain and successful performance. This thesis focuses on generating multivariate time series data that are similar to vehicle sensor readings from the air pressures in the brake system of vehicles with an abnormal behaviour, meaning there is a leakage somewhere in the system. A novel GAN architecture called TimeGAN was trained to generate such data and was then evaluated using both qualitative and quantitative evaluation metrics. Two versions of this model were tested and compared. The results obtained proved that both models learnt the distribution and the underlying information within the features of the real data. The goal of the thesis was achieved and can become a foundation for future work in this field. / När man applicerar en modell för att utföra en maskininlärningsuppgift, till exempel att förutsäga utfall eller upptäcka avvikelser, är det viktigt med stora dataset för att uppnå hög prestanda, noggrannhet och generalisering. Det är dock inte ovanligt att dataset är små eller obalanserade eftersom insamling av data kan vara svårt, tidskrävande och dyrt. När man vill samla tidsserier från sensorer på fordon är dessa problem närvarande och de kan hindra bilindustrin i dess utveckling. Generering av syntetisk data har blivit ett växande intresse bland forskare inom flera områden som ett sätt att hantera problemen med datainsamling. Bland de metoder som undersökts för att generera data har generative adversarial networks (GANs) blivit ett populärt tillvägagångssätt i forskningsvärlden på grund av dess breda applikationsdomän och dess framgångsrika resultat. Denna avhandling fokuserar på att generera flerdimensionell tidsseriedata som liknar fordonssensoravläsningar av lufttryck i bromssystemet av fordon med onormalt beteende, vilket innebär att det finns ett läckage i systemet. En ny GAN modell kallad TimeGAN tränades för att genera sådan data och utvärderades sedan både kvalitativt och kvantitativt. Två versioner av denna modell testades och jämfördes. De erhållna resultaten visade att båda modellerna lärde sig distributionen och den underliggande informationen inom de olika signalerna i den verkliga datan. Målet med denna avhandling uppnåddes och kan lägga grunden för framtida arbete inom detta område.
|
7 |
Privacy-preserving Synthetic Data Generation for Healthcare Planning / Sekretessbevarande syntetisk generering av data för vårdplaneringYang, Ruizhi January 2021 (has links)
Recently, a variety of machine learning techniques have been applied to different healthcare sectors, and the results appear to be promising. One such sector is healthcare planning, in which patient data is used to produce statistical models for predicting the load on different units of the healthcare system. This research introduces an attempt to design and implement a privacy-preserving synthetic data generation method adapted explicitly to patients’ health data and for healthcare planning. A Privacy-preserving Conditional Generative Adversarial Network (PPCGAN) is used to generate synthetic data of Healthcare events, where a well-designed noise is added to the gradients in the training process. The concept of differential privacy is used to ensure that adversaries cannot reveal the exact training samples from the trained model. Notably, the goal is to produce digital patients and model their journey through the healthcare system. / Nyligen har en mängd olika maskininlärningstekniker tillämpats på olika hälso- och sjukvårdssektorer, och resultaten verkar lovande. En sådan sektor är vårdplanering, där patientdata används för att ta fram statistiska modeller för att förutsäga belastningen på olika enheter i sjukvården. Denna forskning introducerar ett försök att utforma och implementera en sekretessbevarande syntetisk datagenereringsmetod som uttryckligen anpassas till patienters hälsodata och för vårdplanering. Ett sekretessbevarande villkorligt generativt kontradiktoriskt nätverk (PPCGAN) används för att generera syntetisk data från hälsovårdshändelser, där ett väl utformat brus läggs till gradienterna i träningsprocessen. Begreppet differentiell integritet används för att säkerställa att motståndare inte kan avslöja de exakta träningsproven från den tränade modellen. Målet är särskilt att producera digitala patienter och modellera deras resa genom sjukvården.
|
8 |
Classification of Radar Emitters Based on Pulse Repetition Interval using Machine LearningSvensson, André January 2022 (has links)
In electronic warfare, one of the key technologies is radar. Radar is used to detect and identify unknown aerial, nautical or land-based objects. An attribute of of a pulsed radar signal is the Pulse Repetition Interval (PRI) which is the time interval between pulses in a pulse train. In a passive radar receiver system, the PRI can be used to recognize the emitter system. Correct classification of emitter systems is a crucial part of Electronic Support Measures (ESM) and Radar Warning Receivers (RWR) in order to deploy appropriate measures depending on the emitter system. Inaccurate predictions of emitter systems can have lethal consequences and variables such as time and confidence in the predictions are essential for an effective predictive method. Due to the classified nature of military systems and techniques, there are no industry standard systems or techniques that perform quick and accurate classifications of emitter systems based on PRI. Therefore, methods that allows for fast and accurate predictions based on PRI is highly desirable and worthy of research. This thesis explores and compares the capabilities of two machine learning methods for the task of classifying emitters based on received PRI. The first method is an attention based model which performs well throughout all levels of realistic noise and is quick to learn and even quicker to give accurate predictions. The second method is a K-Nearest Neighbor (KNN) implementation that, while performing well for noise-free PRI, finds its performance degrading as the amount of noise increases. An additional outcome of this thesis is the development of a system to generate samples in an automated fashion. The attention based model performs well, achieving a macro avarage F1-score of 63% in the 59-class recognition task whereas the performance of the KNN is lower, achieving a macro avarage F1-score of 43%. Future research could be conducted with the purpose of designing a better attention based model for producing higher and more confident predictions and designing algorithms to reduce the time complexity of the KNN implementation. / En av de viktigaste teknikerna inom telektrig är radarn. Radar används för att upptäcka och identifiera okända, luftburna, sjögående eller landbaserade förmål. En komponent av radar är Pulsrepetitionsinterval (Pulse Repetition Intervall, PRI) som beskrivs som tidsintervallet mellan två inkommande pulser. I ett radarvarnar system (Radar Warning Receiver, RWR) kan PRI användas för att identifiera radarsystem. Korrekt identifiering av radarsystem är en viktig uppgift för elektroniska understödsmedel (Electronic Support Measures, ESM) med syfte att tillsätta lämpliga medel beroende på radarsystemet i fråga. Icke tillförlitlig identifiering av radarsystem kan ha dödliga konsekvenser och variabler som tid och säkerhet i identifieringen är avgörande för ett effektivt system. Då dokumentation och specifikationer för militära system i regel är hemligstämplade är det svårt att utröna någon typ av industristandard för att utföra snabb och säker klassificering av radarsystem baserat på PRI. Därför är det av stort intresse detta område och möjligheterna för sådana lösningar utforskas. Detta examensarbete utforskar och jämför förmågorna hos två maskininlärningsmetoder i avseende att korrekt identifiera radarsändare baserat på genererat PRI. Den första metoden är ett djupt neuralt nätverk som använder sig av tekniken ”attention”. Det djupa nätverket presterar bra för alla brusnivåer och lär sig snabbt att känna igen attributen hos PRI som kännetecknar vilken radarsändare och som efter träning dessutom är snabb på att korrekt identifiera PRI. Den andra metoden är en K-Nearest Neighbor implementation som förvisso presterar bra på icke brusig data men vars förmåga försämras allt eftersom brusnivåerna ökar. Ett ytterligare resultat av arbetet är utvecklingen och implementationen av en metod för att specificera PRI och sedan generera PRI efter specifikation. Attention modellen genererar bra prediktioner för data bestående av 59 klasser, med ett F1-score snitt om 63% medan KNN-implementationen för samma uppgift har en lägre träffsäkerhet med ett F1-score snitt om 43%. Vidare forskning kan innefatta utökad utveckling av det djupa, neurala nätverket i syfte att förbättra dess förmåga för identifiering och metoder för att minimera tidsåtgången för KNN implementationen.
|
Page generated in 0.0618 seconds