201 |
Reducering av utsläpp till luft : Optimering av SCA Ortvikens drift och underhållsarbeteBergström, Robin January 2019 (has links)
SCA Ortvikens energiavdelning har fem stycken fastbränslepannor som försörjer interna förbrukare med processånga. Bränslet är i huvudsak bark, biologiskt slam och pelletspulver. SCA är ålagda att registrera utsläpp till luft och redovisa detta enligt de i verksamhetstillståndet villkorsbelagda utsläppen samt för kväveoxid-deklaration och för handel om utsläppsrätter för CO2. Förutom verksamhetstillståndet innefattas SCA Ortviken dessutom av förordningen 2013:252 Stora förbränningsanläggningar. För att redovisa detta används miljöredovisningssystemet ”MRS” från Entric AB. Drift-och underhåll saknar i nulägen en övergripande bild över MRS vilket skulle underlätta deras arbete för att säkerställa funktion på ingående signaler och därmed minska risken för mätbortfall vilket kan förebygga höga utsläpp under produktionen i framtiden. I detta arbete har, genom flödesscheman för de mest relevanta signaler och mätvärden vad gäller utsläpp som är kopplade till MRS, kunna underlätta för processoperatörer och underhållsorganisationen att säkerställa mätfunktionen. Arbetet har dessutom, genom analys av historiska data över driften, lett till förslag på åtgärder för att minska bildandet av olika utsläpp. Arbetet har visat att det finns många enkla åtgärder som kan göras för att minska utsläppen på redan befintligt installerad teknik på pannorna, men även gett förslag på annat teknik, och hur denna kan appliceras. Arbetet har också visat på brister i den nuvarande dokumentation-och signalhanteringen i avseende att göra mätvärden synliga i processystem andra än MRS.
|
202 |
Effects of Swirl Number and Central Rod on Flow in Lean Premixed Swirl CombustorYellugari, Kranthi 21 October 2019 (has links)
No description available.
|
203 |
Structure and Nitrogen Chemistry in Coal, Biomass, and Cofiring Low-NOx FlamesDamstedt, Bradley David 15 March 2007 (has links) (PDF)
Addressing global climate change will require increasing sustainable energy usage. Cofiring biomass fuels with coal for electrical power generation is an efficient, cost effective method of CO2 mitigation. This work is an experimental investigation of the flame structure and nitrogen chemistry differences occurring between coal, biomass and cofiring flames. A pilot-scale facility was fired with a dual-feed low-NOx burner capable of independently conveying 2 separate fuels unblended to the burner. Spatially detailed gas species measurements were made for 8 flames, including a coal, straw, finely ground straw, wood, and 4 straw/coal cofiring flames. Particle samples were also obtained from 5 of the flames. Intermittent flamelets were frequently observed in the flames. Viewing the substructure of the flame as individual flamelets provides critical insight for the interpretation of the data. The biomass and cofiring flames show larger flame volumes due to increased primary momentum, increased volatile yields, and differences in fuel particle characteristics (size and shape). The straw and cofiring flames also include secondary flame structures. The secondary flames result from delayed reaction of the straw “knees" due to differences in fuel characteristics. Biomass fuel-N was shown to evolve primarily through NH3, while the coal showed roughly equal amounts of NH3 and HCN. Due to increases in the flame volume and greater NH3 release within these larger fuel-rich regions, as well as lower fuel-N content, effluent concentrations of NO for the biomass and cofiring flames are lower than the coal flame. In-flame reduction of NO corresponds spatially to the presence of NH3, suggesting advanced reburning. Lower fuel-N contents are thought to increase the overall NO production efficiency, but this effect is uncertain for this work due to differences in flame structure and fuel-N chemistry. A mixing model based on intermittent flamelet behavior is included. The model uses dual-delta functions (DDF) to represent lean and rich eddies passing through a sampling volume. Both the beta-pdf and the DDF model were fit to data obtained in this study and compared. The beta-pdf model was unable to capture intermittent behavior. The DDF model was able to represent intermittent behavior, but produced physically unrealistic results.
|
204 |
Evaluation of the Benefits of Oxy-combustion on Emissions from a Compression Ignition EngineSalt, Thomas A. 12 June 2009 (has links) (PDF)
In this research the benefits of applying oxy-combustion in a diesel engine to reduce NOx and particulate emissions were evaluated. The addition of oxygen to the intake in conjunction with exhaust gas recirculation (EGR) was shown to reduce NOx without an increase in particulate. Indicated specific NOx and particulate emissions for oxygen-enhanced EGR (O-EGR) and EGR without oxygen addition (normal or N-EGR) were compared at three engine loads. NOx emissions correlated with flame temperature for both N-EGR and O-EGR but were slightly lower at a given flame temperature for O-EGR. Flame temperature reduction for N-EGR was primarily through dilution of the available oxygen while for O-EGR both the increase of specific heat and dilution were important in reducing flame temperature. Oxygen addition allowed the use of high levels of EGR without reducing the oxygen concentration, thereby substituting CO2 and H2O for a substantial portion of the N2 as diluent. Increased dissociation due to higher levels of CO2 was believed to provide a minor enhancement to flame temperature reduction for O-EGR. An analysis of NOx formation based on the Zeldovich mechanism suggested that increased NOx reduction for O-EGR at equivalent flame temperatures is due to lower nitrogen concentrations. Indicated specific particulate increased with increasing EGR for N-EGR and correlated with flame temperature but remained constant for O-EGR and did not correlate with flame temperature. This indicated that O-EGR has a chemical effect on particulate formation and/or oxidation. The literature suggests CO2 suppresses soot formation by decreasing the radical H concentration which reduces the formation of soot precursors and soot growth.
|
205 |
A Statistical Approach to Bridge the Gap Between Fault and No-FaultEndre, Hjalmar January 2022 (has links)
No description available.
|
206 |
Effects Of Transport Properties And Flame Unsteadiness On Nitrogen Oxides Emissions From Laminar Hydrogen Jet Diffusion FlamesPark, Doyoub 01 January 2005 (has links)
Experimental studies on the coupled effects of transport properties and unsteady fluid dynamics have been conducted on laminar, acoustically forced, hydrogen jet diffusion flames diluted by argon and helium. The primary purpose of this research is to determine how the fuel Lewis number and the flow unsteadiness play a combined role in maximum flame temperature and affect NOx emission from jet diffusion flame. The fuel Lewis number is varied by increasing/decreasing the mole fraction of diluents in the fuel stream. Therefore, maximum flame temperatures and then NOx emission levels were expected to differ for Ar- and He-diluted flames. In an investigation of unsteady flames, two different frequencies (10 and 100 Hz) were applied to observe a behavior of NOx emission levels and flame lengths by changes of unsteady fluid dynamics and transport properties.
|
207 |
Quantification Of Emissions From Lawn And Garden Equipment In Central FloridaCrum, Megan Leigh 01 January 2007 (has links)
The objective of this study was to evaluate the practical limits of EPA's NONROAD 2005 to accurately simulate Central Florida conditions, especially with regard to lawn and garden equipment. In particular we investigated a NONROAD emission inventory using default inputs and then created a locally specific emission inventory. These emission inventories were prepared for Orange, Osceola, and Seminole county and focused only on the VOC and NOx emissions caused by lawn and garden equipment. The model was manipulated to assess its ability to represent this specific category of nonroad equipment for a given airshed first by running a base case scenario using default data and then by developing a locally-specific scenario through administration of a survey. The primary purpose of the survey was to evaluate local values for equipment population, equipment characteristics, activity estimates, and other relevant information. To develop these local input estimates, data were collected concerning population and usage statistics in the Central Florida area and were combined with emission factors, load factors, allocation factors, and other needed values that have been previously established by the U.S. EPA. The results of the NONROAD model were compared with the resulting emission estimates calculated from locally derived inputs, and as a result of the analysis an accurate emission estimate was calculated. In addition, several possible air quality action steps were further assessed according to feasibility, cost, and predicted emission benefit. These potential management projects were further investigated by assessing the success of other similar projects in other cities in an effort to establish specific costs and emission benefits as they relate to the tri-county area.
|
208 |
Biological Evaluation of NADPH Oxidase Inhibitors for Reduction of Ultraviolet Oxidative Damage in SkinSterling, Alyssa January 2022 (has links)
No description available.
|
209 |
Homeostatic Regulation of Interleukin-4-Mediated Cell SignalingChakraborty, Rikhia 21 December 2009 (has links)
No description available.
|
210 |
Effects of Turbulence on NOx Emissions from Lean Perfectly-Premixed CombustionAlAdawy, Ahmed S. 08 September 2014 (has links)
No description available.
|
Page generated in 0.0251 seconds