• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 13
  • 13
  • 13
  • 7
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 185
  • 54
  • 30
  • 30
  • 24
  • 23
  • 20
  • 20
  • 19
  • 18
  • 16
  • 16
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Natural variation in freezing tolerance in Arabidopsis thaliana

Zhen, Ying January 1900 (has links)
Doctor of Philosophy / Department of Biology / Mark Ungerer / Elucidating the molecular basis of adaptive phenotypic variation represents a central aim in evolutionary biology. Using the model plant species Arabidopsis thaliana, I studied the intra-specific variation in freezing tolerance among natural accessions across its native range. Considerable variation in freezing tolerance among 71 selected accessions was observed both with and without a prior cold acclimation treatment, suggesting that both differences in cold-acclimation capacity and in intrinsic physiology contribute to this variation. A highly significant positive relationship was observed between freezing tolerance and latitude of origin of these accessions. This clinal pattern of variation is found to be attributable, at least in part, to relaxed purifying selection on CBF/DREB1 genes in the species’ southern range. These CBF/DREB1 genes encode transcriptional activators that play a critical role in the ability of A. thaliana plants to undergo cold acclimation and thereby achieve maximum freezing tolerance. Relative to accessions from northern regions, accessions of A. thaliana from the southern part of their geographic range exhibit significantly higher levels of nonsynonymous polymorphisms in coding regions of CBF/DREB1 genes. Relaxed selection on the CBF/DREB1s in southern accessions also has resulted in mutations in regulatory regions that lead to abrogated expression. These mutations in coding and regulatory regions compromise the function of CBF/DREB1 transcriptional activators during the cold acclimation process, as determined by reductions in rates of induction and maximum levels of expression in the downstream genes they regulate. These mutations could be selective neutral or beneficial in southern accessions depending on whether there is an allocation cost associated with cold acclimation. The fitness benefit and possible allocation cost of cold acclimation was examined in freezing and freezing-free environments using natural accessions exhibiting contrasting abilities of cold acclimation as well as transgenic CBF gene over-expression or knockdown/knockout lines. The extent to which cold acclimation benefits the plant in presence of freezing temperature is revealed, but a cost of cold acclimation wasn’t detected in the absence of freezing temperature under our experimental design, which suggests that these mutations in CBF genes in southern accessions might be neutral to natural selection.
62

Photosynthetic acclimation to temperature of four Eucalyptus species and Sequoia sempervirens

Oparah, Irene A. January 2012 (has links)
The 3-PG physiological/mensurational hybrid model is a useful forest management tool capable of producing accurate growth results across a number of parameterised species. The temperature data used in the model are the average maximum and minimum values for photosynthesis above the compensation point (Landsberg and Sands 2011). There is a minimum temperature below which positive net CO₂ exchange will not occur, a maximum temperature above which it will not occur and an optimum temperature at which it is maximised. These parameters are used in the 3-PG physiological model of forest production. However, a species’ photosynthetic response to short-term variation may differ from one season to another as species acclimate to temperatures over periods of a few weeks. In this study, acclimation responses of four species of eucalypt and Sequoia sempervirens to long-term temperatures were studied over a wide range of short-term temperature changes in order to identify the minimum, optimum and maximum temperatures of CO₂ assimilation for physiological/mensurational hybrid modelling, and also to identify the sites for which the species would be best suited. In order to achieve the aims of this study, a growth chamber experiment was established. Seedlings of four eucalypt species and Sequoia sempervirens were grown at base-line day/night temperatures of 30/16, 22/12 and 10/5ºC in controlled environment chambers for three months and leaf gas exchange measurements were made of the species at seven short-term temperature levels (5, 10, 15, 20, 25, 30 and 35ºC). The optimum and the maximum temperatures for net photosynthesis increased with an increase in base-line temperature for all species. The highest optimum temperature and net photosynthetic rates recorded were in plants grown at 30/16ºC and the lowest were in those grown at 10/5ºC. The maximum rate of net CO₂ assimilation increased with the temperature at which plants were grown partly because of acclimation in key photosynthetic processes in the Calvin cycle. Responses of maximal carboxylation rate (Vcmax) and also the maximal light-driven electron flux (Jmax) to short-term temperature change varied with base-line temperature for all species studied. Net photosynthesis and photosynthetic parameters measured did not vary significantly with effects of nitrogen, phosphorus and their interaction (p = 0.1468). The ratio of Jmax to Vcmax decreased with increasing leaf temperatures for all species (p < 0.001). These results indicate that the species studied will adapt to long-run changes in temperature, and the parameters obtained from these studies can be used for models that simulate the physiology and growth of the species.
63

Mechanisms regulating the thermal acclimation of dark respiration in snow tussock and ryegrass

Clifford, Veronica Rose January 2007 (has links)
The aim of this research was to identify the mechanisms that underpin changes in respiratory capacity during acclimation to temperature. Dark respiration, enzyme activities and leaf ultrastructure were measured from ryegrass (Lolium perenne) in controlled environmental chambers and two species of native grass (Chionochloa rubra & C. pallens) growing at different altitudinal ranges on Mount Hutt, Canterbury, New Zealand. The overall hypothesis was that the changes in both mitochondrial numbers and enzyme activity underpin the greater respiratory capacity observed in response to decreasing temperatures. Gas exchange measurements were carried out to measure rates of dark respiration (Rd) in leaves of both ryegrass and tussocks. Respiratory homeostasis (full acclimation) was achieved in ryegrass leaves but only partial acclimation in both species of tussock plants. Dark respiration rates for warm-grown ryegrass were greatly reduced compared to cool-grown grasses. Rd was lower for C. rubra growing at the base of the mountain (450m) compared to plants at a higher altitude (1060m). The dark respiration rates were also lower for C. pallens growing at 1070m than at 1600m. When comparing Rd between high and low altitude plants, it was significantly lower in low altitude plants at 450m than at 1600m. Oxygen consumption was measured in intact leaves and roots, crude mitochondria and isolated mitochondria from ryegrass to investigate whether a change in respiratory capacity was involved with changes in Rd. Mitochondrial respiratory capacity was slightly reduced in warm leaves and roots (not significantly). The respiratory capacity results from isolated mitochondria for C. rubra (at 450m and 1060m) and C. pallens (at 1070m and 1600m) were consistent with the hypothesis that plants from warm sites have lower respiratory capacity in comparison to plants from cool sites. Based on these results and those of previous studies, it was concluded that respiratory flux for any given temperature is not simply determined by maximal capacities of the respiratory apparatus but rather a combination of the availability of substrate supply, the demand for respiratory products (i.e. ATP) and/or the maximal capacity of respiratory enzymes. Utilizing transmission electron micrographs, it was found that mitochondria were significantly less abundant in warm-grown than cool-grown ryegrass mesophyll cells. Mitochondria dimensions increased slightly between the cool and warm treatment. At lower altitudes (C. rubra), there was a significant decrease in mitochondria numbers with decreasing elevation. At higher altitudes (C. pallens), there was no noticeable change in mitochondria numbers between 1070m and 1600m. It was concluded that mitochondrial abundance for the controlled and field experiments, and mitochondrial sizes in the field, were associated with changes in Rd. The maximal activities of fumarase and succinate dehydrogenase (SDH) in isolated mitochondria from leaves of ryegrass and tussock were measured spectrophotometrically. The results in the controlled experiment indicate that enzymes other than fumarase and SDH could be responsible for the increased respiratory capacity observed in cold acclimated leaves of ryegrass. However, fumarase maximal activity was significantly reduced in C. rubra at low altitude compared with C. pallens growing at high altitude - this suggests that it may be involved in the differences in respiratory capacity and Rd between the two sites. Succinate dehydrogenase did not differ significantly in response to altitude. The large difference between the two field sites for fumarase activity is comparable to the large difference in Rd and reduction in mitochondrial abundance and dimensions seen between the two sites. This supports the overall hypothesis that cool-grown plants keep up with energy demands at low temperatures by increasing enzyme concentrations/capacity. The results of this study are supportive of the hypothesis that growth in low altitudes and warm conditions will result in the reduction of Rd as a consequence of: (1) temperature sensitivity of the respiratory apparatus, resulting in the reduction of the respiratory capacities of mitochondria; (2) a reduction in mitochondria size and numbers; and as a consequence of this (3) a reduction in the activities of mitochondrial enzymes. However, these responses are species specific and vary according to the range of temperatures experienced by plants in the field and controlled environments.
64

ENVIRONMENTAL SENSITIVITY OF MITOCHONDRIAL GENE EXPRESSION IN FISH

BREMER, KATHARINA 22 October 2013 (has links)
Maintaining energy organismal homeostasis under changing physiological and environmental conditions is vital, and requires constant adjustments of the energy metabolism. Central to meeting energy demands is the regulation of mitochondrial oxidative capacity. When demands increase, animals can increase mitochondrial content/enzymes, known as mitochondrial biogenesis. Central to mammalian mitochondrial biogenesis is the transcriptional master regulator PPARγ (peroxisome proliferator-activated receptor γ) coactivator-1α (PGC-1α), and the network of DNA-binding proteins it coactivates (e.g. nuclear respiratory factor 1 and 2 [NRF-1, NRF-2], estrogen-related receptor α [ERRα], thyroid receptor α [TRα-1], retinoid X receptor α [RXRα]). However, the mechanisms by which mitochondrial content in lower vertebrates such as fish is controlled are less studied. In my study I investigate underlying mechanisms of the phenomenon that many fish species alter mitochondrial enzyme activities, such as cytochrome c oxidase (COX) in response to low temperatures. In particular, I investigated (i) if the phenomenon of mitochondrial biogenesis during cold-acclimation is related to fish phylogeny, (ii) what role PGC-1α and other transcription factors play in mitochondrial biogenesis in fish, and (iii) if mRNA decay rates are important in the transcriptional control of a multimeric protein like COX. This study shows that mitochondrial biogenesis does not follow a phylogenetic pattern: while distantly related species displayed the same response to low temperatures, closely related species showed opposite responses. In species exhibiting mitochondrial biogenesis, little evidence was found for PGC-1α as a master regulator, whereas NRF-1 is supported to be an important regulator in mitochondrial biogenesis in fish. Further, there was little support for other transcription factors (NRF-2, ERRα, TRα-1, RXRα) to be part of the regulatory network. Lastly, results on the post-transcriptional control mechanism of mRNA decay indicate that this mechanism is important in the regulation of COX under mitochondrial biogenesis: it accounts for up to 30% of the change in subunit transcript levels. In summary, there is no simple temperature-dependent mitochondrial response ubiquitous in fish. Further, the pathways controlling mitochondrial content in fish differ from mammals in the important master regulator PGC-1α, however, NRF-1 is important in regulating cold-induced mitochondrial biogenesis in fish. Lastly, COX subunit mRNA decay rates seem to have a part in controlling COX amounts during mitochondrial biogenesis. / Thesis (Ph.D, Biology) -- Queen's University, 2013-10-21 09:53:59.46
65

Roles of LESIONS SIMULATING DISEASE1 and Salicylic Acid in Acclimation of Plants to Environmental Cues : Redox Homeostasis and physiological processes underlying plants responses to biotic and abiotic challenges

Mateo, Alfonso January 2005 (has links)
In the natural environment plants are confronted to a multitude of biotic and abiotic stress factors that must be perceived, transduced, integrated and signaled in order to achieve a successful acclimation that will secure survival and reproduction. Plants have to deal with excess excitation energy (EEE) when the amount of absorbed light energy is exceeding that needed for photosynthetic CO2 assimilation. EEE results in ROS formation and can be enhanced in low light intensities by changes in other environmental factors. The lesions simulating disease resistance (lsd1) mutant of Arabidopsis spontaneously initiates spreading lesions paralleled by ROS production in long day photoperiod and after application of salicylic acid (SA) and SA-analogues that trigger systemic acquired resistance (SAR). Moreover, the mutant fails to limit the boundaries of hypersensitive cell death (HR) after avirulent pathogen infection giving rise to the runaway cell death (rcd) phenotype. This ROS-dependent phenotype pointed towards a putative involvement of the ROS produced during photosynthesis in the initiation and spreading of the lesions. We report here that the rcd has a ROS-concentration dependent phenotype and that the light-triggered rcd is depending on the redox-state of the PQ pool in the chloroplast. Moreover, the lower stomatal conductance and catalase activity in the mutant suggested LSD1 was required for optimal gas exchange and ROS scavenging during EEE. Through this regulation, LSD1 can influence the effectiveness of photorespiration in dissipating EEE. Moreover, low and high SA levels are strictly correlated to lower and higher foliar H2O2 content, respectively. This implies an essential role of SA in regulating the redox homeostasis of the cell and suggests that SA could trigger rcd in lsd1 by inducing H2O2 production. LSD1 has been postulated to be a negative regulator of cell death acting as a ROS rheostat. Above a certain threshold, the pro-death pathway would operate leading to PCD. Our data suggest that LSD1 may be subjected to a turnover, enhanced in an oxidizing milieu and slowed down in a reducing environment that could reflect this ROS rheostat property. Finally, the two protein disulphide isomerase boxes (CGHC) present in the protein and the down regulation of the NADPH thioredoxin reductase (NTR) in the mutant connect the rcd to a putative impairment in the reduction of the cytosolic thioredoxin system. We propose that LSD1 suppresses the cell death processes through its control of the oxidation-reduction state of the TRX pool. An integrated model considers the role of LSD1 in both light acclimatory processes and in restricting pathogen-induced cell death.
66

Characterization and expression patterns of five Winter Rye ??-1,3-endoglucanases and their role in cold acclimation

McCabe, Shauna January 2007 (has links)
Winter rye produces ice-modifying antifreeze proteins upon cold treatment. Two of these antifreeze proteins are members of the large, highly conserved, ??-1,3-endoglucanase family. This project was designed to identify glucanase genes that are expressed during cold acclimation, wounding, pathogen infection, drought or treatment with the phytohormones ethylene and MeJa. Additionally, a more detailed proteomic analysis was to be carried out to evaluate the glucanase content of the apoplast of cold-acclimated (CA) winter rye. Results of 2D SDS-PAGE analysis revealed that non-acclimated whole leaf protein extracts contain at least two ??-1,3-endoglucanses while CA whole leaf protein extracts contain at least three ??-1,3-endoglucanses. Subsequent 2D SDS-PAGE analysis was conducted on the apoplast extracts of NA and CA winter rye plants revealed the limitations of standard 1D SDS-PAGE. The 2-dimensional gel analysis revealed that there is a minimum of 25 proteins within the apoplast of CA winter rye, including at least 5 ??-1,3-endoglucanases. Genome walking was used to isolate cold-responsive glucanase genes. The five genes isolated were designated scGlu6, scGlu9, scGlu10, scGlu11 and scGlu12. The cis-element pattern within the promoter of each gene was evaluated using online databases of documented plant cis elements. As expected, all of the promoters contained elements associated with cold, biotic and abiotic stresses, light regulation, and development. The expression patterns predicted by the cis elements in each promoter were compared to the mRNA abundance produced by each gene as detected by semi-quantitative reverse transcriptase PCR. In most cases, the abundance of transcripts arising from each gene loosely corresponded to the expression pattern predicted by the cis elements the corresponding promoter. Transcripts of scGlu9, 10 and 11 were present in cold-treated tissues and are candidates for ??-1,3-endoglucanases with antifreeze activity. The results presented in this thesis provide additional insight into the apoplast proteome of CA winter rye plants as well as the complexity of the signals controlling the proteins that reside there. Although there are still a number of unresolved questions, this research opens new directions for future studies in the cold acclimation process in winter rye and specifically for the contribution of ?? -1,3-endoglucanses.
67

Genomics and physiological evolution of cold tolerance in Drosophila melanogaster

Gerken, Alison Renae January 1900 (has links)
Doctor of Philosophy / Division of Biology / Theodore J. Morgan / Thermal stress impacts animals around the globe and understanding how organisms adapt to changes in temperature is of particular interest under current climate change predictions. My research focuses on the evolutionary genetics involved in cold tolerance and plasticity of cold tolerance using both artificially selected and naturally segregating populations, while tying the genes of interest to their physiological components. First I address cross-tolerance of stress traits following artificial selection to a non-lethal cold tolerance metric, chill-coma recovery. Using these artificial selection populations, we found that stress traits such as desiccation tolerance, starvation tolerance, acclimation, and chronic and acute cold tolerance do not correlate with level of cold tolerance as defined by chill-coma recovery time. We next assessed lifetime fitness of these different cold tolerance lines and found that only at low temperatures did fitness differ among cold tolerance levels. We then analyzed gene expression differences between resistant and susceptible populations at three time points to understand where selection pressures are hypothesized to act on genomic variation. Our gene expression analyses found many differences between resistant and susceptible lines, primarily manifesting themselves in the recovery period following cold exposure. We next utilized a community resource, the Drosophila melanogaster reference panel, to identify naturally segregating variation in genes associated with cold acclimation and fitness. We specifically asked if long- and short-term acclimation ability had overlapping genetic regions and if plasticity values from constant rearing environments were associated with demographic parameters in fluctuating environments. We found that long- and short-term acclimation are under unique genetic control and functionally tested several genes for acclimation ability. We also found that acclimation ability in constant environments and fitness in fluctuating environments do not correlate, but that genotypes are constrained in their fitness abilities between a warm and cool environment. Our analyses describe several novel genes associated with cold tolerance selection and long- and short-term acclimation expanding our knowledge of the complex relationship between demographic components and survivorship as well as a unique investigation of the change in gene expression during cold exposure.
68

Does Thermotolerance in Daphnia Depend on the Mitochondrial Function?

Hasan, Rajib 01 August 2019 (has links)
Thermotolerance limit in aquatic organism is set by the ability to sustain aerobic scope to sudden temperature shifts. This study tested the genetic and plastic differences in thermotolerance of Daphnia that can be explained by the differences in the ability to retain mitochondrial integrity at high temperatures. Five genotypes with different biogeographic origins were acclimated to 18ᵒC and 25ᵒC. We developed a rhodamine 123 in-vivo assay to measure mitochondrial membrane potential and observed higher fluorescent in heat damaged tissues as the disruption of the mitochondrial membrane potential. Significant effects on temperature tolerance were observed with CCCP and DNP but not with NaN3. Effects of toxins were significant in temperature sensitive genotype and high concentration of lactate was observed in 18ᵒC acclimated genotype only. We conclude that genetic and physiological differences are intricately linked to the ability of sustaining aerobic respiration at high temperatures which sets limit to the thermotolerance.
69

Modélisation du développement architectural, de l'acclimatation au vent dominant et de l'ancrage du système racinaire du pin maritime / Modelling of architectural development, acclimation to dominant wind and anchorage of Pinus pinaster root system

Saint Cast, Clément 08 February 2019 (has links)
Plus de la moitié des pertes de bois dans les forêts européennes sont dues aux tempêtes. Une connaissance des mécanismes impliqués dans la stabilité mécanique des arbres est alors capitale. L’ancrage de l’arbre dans le sol constitue l’une des composantes principales du maintien mécanique de l’arbre. Il est principalement déterminé par l’architecture du système racinaire et son interaction mécanique avec le sol. Au cours de son développement, l’arbre modifie ses dimensions et se complexifie. Plus particulièrement, le système racinaire semble s’acclimater (ex : croissance en diamètre plus importante) aux déformations engendrées par le vent. L’ensemble de ces modifications conduit à une évolution des mécanismes à l’origine de l’ancrage au cours du développement de l’arbre. L’étude expérimentale de cette fonction est compliquée car les racines sont difficilement mesurables en continu dans le sol. Nous avons alors mis au point une approche numérique pour décrire la croissance du système racinaire et la distribution des déformations dues au vent. Une grande base de données structurée en chronoséquence de systèmes racinaires numérisés (Pinus pinaster) a été mobilisée. Comme l’étude de la structure et des fonctions des racines est plus efficiente quand la différentiation entre racines est prise en compte, nous avons d’abord formalisé les types racinaires du système racinaire du pin maritime à partir d’une technique de classification (« k-means clustering ») réalisée avec quatre variables. La classification des racines latérales du pin maritime nous a permis d’identifier 5 types racinaires au cours du développement du pin maritime. Ce regroupement explique 70% de la variabilité de notre base de données. Chaque système racinaire est caractérisé par trois grosses racines horizontales émises par la souche. Les racines montrent une forte différentiation pour leur tropisme, avec une direction de croissance soit horizontale soit verticale. La structure de la partie centrale du système racinaire est pratiquement complète dès l'âge de 4 ans. Sur la base des types racinaires identifiés, nous avons calibré un modèle architectural (RootTyp ; Pagès et al. 2004) pour le pin maritime. Treize paramètres pour chaque type racinaire ont été estimés par l’intermédiaire de la base de données, d’informations issues de la littérature et d’une procédure d'optimisation. Une modélisation réaliste du système racinaire jusqu'à 50 ans n’a pu être obtenue qu'en implémentant au modèle RootTyp de nouveaux processus biologiques : la diminution de la ramification avec la croissance de la racine et la diminution de la vigueur des racines avec l'ordre de ramification. Malgré ces améliorations, les systèmes racinaires de la base de données présentent des diamètres plus importants à proximité de la souche par rapport aux systèmes racinaires simulés. Ce biais systématique est principalement attribué à l’acclimatation des racines au vent dominant. Les altérations de croissance dues aux contraintes pédologiques ont également été implémentées grâce à l’amélioration du module de sol du modèle architectural.Enfin, pour comprendre les mécanismes à l’origine de l’acclimatation des racines nous avons combiné plusieurs modèles pour prédire la distribution spatiale des déformations dans des maquettes simplifiées de systèmes racinaires à 4, 6 et 13 ans, pour trois régimes de vent spécifiques à la région étudiée. D’après les simulations, les déformations des racines sous l'effet du vent diminuent avec l’âge, en raison de l’augmentation de la rigidité des racines. Cela suggère une plus forte réponse thigmomorphogénétique aux stades jeunes. Les modifications structurelles et anatomiques du système racinaire par acclimatation au vent s’expliquent principalement par les distributions des déformations et des contraintes dans les racines. / Storms cause more than 50% of the timber loss in European forests. However, forest tree anchorage mechanisms throughout their lifespan are not fully understood, especially the strong acclimation of root systems to common winds. This lack of knowledge is mainly due to technical difficulties: neither the root structure nor the mechanical contribution of the roots could be characterized continually. Thus we set up a numerical approach to model the development of the root system and to describe the strains resulting from common winds. This generic approach has been developed using Pinus pinaster grown in sandy soils as model species.Seven datasets of excavated root systems from 0 to 50 years were employed. The assessment of root structure and functions is more powerful if the differentiation of root system in several root types is considered. We first proposed an automatic classification of roots with the k-means clustering algorithm. Four root traits were chosen as classifiers, including three geometric architectural traits, which can be precisely assessed whatever the tree/root age. Clustering yielded similar five groups of laterals roots at all ages, explaining 70% of the variability. The three largest lateral roots per tree were all horizontal roots branching from stump and the other lateral roots show a large differentiation for tropism: nearly all the roots were horizontal or vertical roots. The framework of the central part of the root system can be almost completed in 4-year-old trees (3.5 cm collar diameter). We then calibrated the existing RootTyp (Pagès et al. 2004) architectural model for P. pinaster for each of the root types defined by the cluster analysis. We used the database combined with a literature review and an optimization method to get accurate values for 13 parameters by root types. We devoted effort to validate our model calibration. In order to model architecture of the root system, damping properties had to be implemented to yield realistic outputs up to the mature stage. Branching varied as a function of distance from the root base, and growth capacity decreased with branching order. Nevertheless, the root diameters of simulated root systems were generally underestimated. This was certainly due to root growth plasticity to the prevailing wind, an acclimation facet not taken into account at this calibration step. Growth alterations due to a cemented horizon were reproduced using the new calibrated soil module. Then, the wind acclimation of roots was numerically investigated by examining the root mechanical stimuli due to wind. A chain of biomechanical models was used to predict the spatial distribution of stress and strain in simplified root systems at 4, 6 and 13-year-old as a result of three levels of usual winds. According to simulations, the strain amplitude decreased with tree growth due to the increasing root system stiffness. This suggests larger thigmomorphogenetic responses at young stages. The modifications of the structural and wood root properties related to wind acclimation were largely explained by the stress and strain distribution in the root system.
70

Efeito da aclimatação termal sobre a sensibilidade e toxicidade termo-dependente ao Glifosato para Ceriodaphnia silvestrii / The effect of thermal acclimation on the sensitivity and temperature-dependent toxicity of Glyphosate to Ceriodaphnia silvestrii

Silva, Laís Conceição Menezes da 27 January 2017 (has links)
Nos últimos anos é crescente o número de estudos que preocupam-se em compreender como as mudanças climáticas podem interferir no equilíbrio dos ecossistemas globais. Dentre as linhas de pesquisa destacam-se as avaliações de toxicidade química termo-dependente (TQTD) já que uma das principais previsões é o aumento da temperatura global. Esta variável ambiental por si só, pode influenciar processos biológicos essenciais de organismos aquáticos ectotérmicos modificando a sensibilidade frente ao estresse ambiental. No entanto, não se deve subestimar a capacidade dos organismos a lidar com condições ambientais adversas, por isso, estudos atuais estão considerando aspectos de aclimatação e adaptação a cenários desfavoráveis. A partir deste contexto, o presente trabalho teve como objetivo geral avaliar o efeito da aclimatação na toxicidade química termo-dependente para uma substância de referência (NaCl) e um herbicida (AKB®) que tem como princípio ativo o Glifosato, substância mais utilizada em agroquímicos no país. O organismo-teste utilizado foi o cladócero Ceriodaphnia silvestrii, organismo padronizado para testes ecotoxicológicos e que possui papel chave na cadeia trófica e ciclo de energia do sistema. Os experimentos foram realizados combinando a metodologia de testes padronizados utilizando três temperaturas (20ºC, 25ºC e 30ºC). A aclimatação foi avaliada através da exposição direta e parental a condições diferenciadas de temperatura. O endpoint foi a imobilidade dos organismos, sendo que a toxicidade e os efeitos da aclimatação foram analisados no programa R 3.3.2. Os resultados obtidos demonstraram um efeito significativo da temperatura na toxicidade de NaCl e do herbicida AKB® para Ceriodaphnia silvestrii. A tendência geral observada foi de TQTD positiva, com exceção da temperatura de origem 25ºC nos testes com o herbicida. A aclimatação promoveu diferenças tanto na toxicidade como na distribuição da sensibilidade dos organismos, evidenciando a importância de incorporá-la na avaliação da toxicidade termo-dependente de xenobióticos. / In recent years there has been a growing number of studies that are concerned with understanding how climate change can interfere with the balance of global ecosystems. Among the lines of research are the evaluations of temperature-dependent chemical toxicity (TDCT), since one of the main predictions is the increase in global temperature. This environmental variable alone can influence the essential biological processes of aquatic ectothermic organisms by modifying the sensitivity to environmental stress. However, the ability of organisms to deal with adverse environmental conditions should not be underestimated, so current studies are considering aspects of acclimation and adaptation to unfavorable scenarios. The objective of this study was to evaluate the effect of acclimation on the temperature-dependent chemical toxicity of a reference substance (NaCl) and an herbicide (AKB®) which has as its active ingredient glyphosate, the most used substance in agrochemicals in the country. The organism used was the cladoceran Ceriodaphnia silvestrii, standardized organism for ecotoxicological tests and which has key role in the trophic chain and energy cycle of the system. The experiments were performed by combining the standardized test methodology using three temperatures (20ºC, 25ºC and 30ºC). The acclimation was evaluated through direct and parental exposure to different temperature conditions. The endpoint was the immobility of the organisms, and the toxicity and effects of acclimation were analyzed in software R 3.3.2. The results showed a significant effect of temperature on the toxicity of NaCl and the herbicide AKB® for Ceriodaphnia silvestrii. The overall trend observed was positive TDCT, except for the 25°C source temperature in the tests with the herbicide. The acclimation promoted differences in the toxicity and the distribution of the sensitivity of the organisms, evidencing the importance of incorporating it in the evaluation of the temperature-dependent toxicity of xenobiotics.

Page generated in 0.1097 seconds