Spelling suggestions: "subject:"denox"" "subject:"detox""
11 |
Snižování oxidů dusíku z proudu spalin na speciálních katalyzátorech / Reduction of nitrogen oxides in flue gas on special catalystsVávra, Jan January 2018 (has links)
The diploma thesis is focused on experimental reduction of nitrogen oxides on special catalysts. The latest and state-of-the-art flue gas cleaning technologies are used. Selective catalytic reduction results in the desired level of pollution. It is necessary to meet the prescribed emission limit. A ceramic honeycomb filter based on vanadium and titanium is used as the catalyst. The entire measurement is carried out on the experimental INTEQ II unit, which is installed in the flue gas cleaning laboratory at NETME Center. It is shown which operating parameters achieve better efficiency of flue gas cleaning. Comparison of the BASF and CERAM catalysts is also performed. Finally, a material balance of the system is performed and a new external electric heater is designed to accelerate the heating process.
|
12 |
SYNTHESIS AND PROPERTIES OF NANOSTRUCTURED SOL-GEL SORBENTS FOR SIMULTANEOUS REMOVAL OF SULFUR DIOXIDE AND NITROGEN OXIDES FROM FLUE GASBuelna Quijada, Genoveva 03 December 2001 (has links)
No description available.
|
13 |
Selective catalytic reduction of nitrogen oxides with ammonia over microporous zeolite catalystsVENNESTROM, PETER NICOLAI RAVNBORG 14 October 2014 (has links)
With increasing legislative demands to remove nitrogen oxides (NOx) from automotive diesel exhaust, new catalyst systems are investigated and intensely studied in industry as well in academia. The most prevailing catalytic method of choice is the selective catalytic reduction (SCR) where non-toxic urea is used as a reductant for practical reasons. Usually urea is stored in a separate tank and once injected into the exhaust system it hydrolyses into the more aggressive reductant NH3 and CO2.
4 NH3 + 4 NO + O2 -> 4 N2 + 6 H2O (NH3-SCR reaction)
In regions where vanadium is not banned cost effective V2O5/WO3/TiO2 NH3-SCR catalyst systems can be used. Vanadium based are well understood, but they do however not provide stability above ca. 550 °C for longer periods of time. In exhaust treatment systems where the temperature is either high or where high temperature excursions are experienced from e.g. regeneration of particulate filters, zeolite based catalysts are therefore today the most promising candidates as high-temperature stable and non-toxic catalysts for the NH3-SCR reaction.
Among the most promising candidates are the Cu- and Fe-based zeolites. Usually Fe based zeolites show good performance in the temperature range 250-500 °C and reasonable stability, whereas Cu-based zeolites show good low-temperature activity in the 180-400 °C range. The presence of copper does however also lead to a lower stability of the catalyst material. Since the low-temperature activity is of paramount importance it is necessary to improve this behavior. Therefore the purpose of this project is to investigate:
- The deactivation mechanism of copper based zeolites
- The influence of the zeolite framework on stability and activity
These investigations should mostly be carried out on model systems such as Cu-ZSM-5 and Cu-IM-5.
Recently it was found that zeolite materials with the CHA-type structure show increased hydrothermal stability, most likely originating from the small 8-MR window openings in the structure. Part of the project should therefore also include investigations on this type and other similar structures, and therefore entail:
- Synthesis, in-depth characterization and catalytic testing of Cu-SSZ-13 and Cu-SAPO-34 (both structures having the CHA-type framework)
- Theoretical DFT calculations on relevant parameters found by the in-depth investigation of the afore-mentioned materials
- Synthesis and testing of similar materials with 8-MR windows to elucidate the influence of the zeolite sub-structure i.e. if different ring sizes in the structure influences the catalytic performance
Relevant characterization techniques include, besides conventional methods, in situ methods such as: high resolution (transmission) electron microscopy, infrared (and raman) spectroscopy together with X-ray absorption spectroscopy. These are all techniques that will complement each other to produce invaluable results.
Zeolites are today applied in many and diverse applications both within automotive and environmental catalysis, but also within the petrochemical and renewable chemistry. The findings of this project are therefore also believed to contribute to a more comprehensive understanding of this class of materials, relevant to many areas of heterogeneous catalysis, and therefore have the potential, to create research and business with very high impact. / Vennestrom, PNR. (2014). Selective catalytic reduction of nitrogen oxides with ammonia over microporous zeolite catalysts [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/43217
|
14 |
DeNOx Studies In Diesel Exhaust Under AC/Pulse EnergizationsBhattacharyya, Anusuya 09 1900 (has links) (PDF)
It is the need of the hour to reduce the pollutants which poison our atmosphere and harm our health. The diesel engines are the most efficient IC engines in the world today, but paradoxically, they are also the engines which create the largest amounts of NOx, the pollutant that is most difficult to control with the existing technologies. In fact, the existing technologies are unable to meet the increasingly stringent standards for NOx. Even in bio-diesels, which in the future may be adopted as an important alternative fuel, NOx is the major pollutant. Thus not having a safe and stable method for NOx removal from the diesel exhaust stream is a cause for concern. In this thesis, there has been an attempt to address this issue by means of non-thermal plasma and catalysts.
In this thesis, first the performance of the three sources was evaluated individually, along with two different HV electrodes, a helical wire and a straight wire. Secondly, the efficiencies of these three different types of sources were compared. Thirdly, a catalyst (Red Mud) and an adsorbent (NaZSM5) were cascaded with the plasma reactor to enhance the performance of the NOx removal process with the AC source as it gave the best results. All the experiments were performed with real diesel engine exhaust. The conclusions drawn from the experiments are as follows:
The helical electrode consumes much lower power than the straight electrode. Therefore it is energy efficient. It also causes corona inception at lower voltages due to the strong non-uniformity of its electric field.
The drawbacks of the helical electrode are an excess production of NO2 .it also does not work with the HFAC source, because at high frequency, the voltage doesn’t build up
owing to the presence of only a dielectric medium of 2 mm thickness between the two electrodes.
The performances of the 3 sources were compared. The HVAC unit gave the best NOx removal, followed by the MPC and finally, the HFAC source.
The differences in efficiencies were related to both the magnitude of the peak voltage achieved by each device and the time period. It was also seen that when the voltage was high, a better efficiency can be achieved with lower power consumption.
The comparison of the sources leads us to conclude that the high voltage AC source can be used as an economic alternative for NOx control. This is because a standard AC unit is easily available at higher voltages, and contains less electrical or mechanical complexity, whereas a pulsed source is comparatively expensive and complex.
The NaZSM5 zeolite showed excellent removal at room temperature as an adsorbent when cascaded after the AC source, by reducing the NO2 levels consistently.
The Red Mud showed reasonable catalytic activity at 400 C with the AC source. It was also efficient in compensating for the increase in the NO2 and CO concentration in the plasma atmosphere.
Hence, both Red Mud and ZSM 5 are good candidates for a hybrid plasma-adsorbent or plasma-catalyst system.
The combination better NOx/CO removal is the AC energization coupled with spiral electrode with either ZSM-5 or red mud.
Scaling up the plasma/ plasma- catalyst system for handling higher flow rates will be the main task next. A method to optimize the source and load matching for better power transfer to the plasma reactor from the different sources also need to be developed. The design of the compact high frequency AC source must be upgraded for higher powers.
|
15 |
Synthesis and characterization of micro- and mesoporous materials for low temperature selective catalytic reduction of nitrogen oxidesKasongo Wa Kasongo, Jean B. January 2011 (has links)
Doctor Educationis / In summary, it has been shown during this study that bimetallic Fe and Mn containing catalysts can be prepared by wet impregnation and not by ion exchange because of the competition between two different metals at different oxidation number. Only a single metallic phase catalyst could be prepared successfully by using ion exchange. / South Africa
|
16 |
On the nature of different Fe sites on Fe-containing micro and mesoporous materials and their catalytic role in the abatement of nitrogen oxides from exhaust gasesMatam, Santhosh Kumar 21 October 2005 (has links)
Gegenstand der Untersuchungen war die Reduktion von Stickoxiden (NOx und N2O) an verschiedenartig präparierten Eisenkatalysatoren (Fe-MF, Fe-beta, Fe-SBA-15). Die Katalysatoren wurden nach Synthese, Kalzinierung und Katalyse mittels EPR und UV/VIS-DRS charakterisiert, und darüber hinaus auch in-situ während des Kalzinierens. Isolierte Eisenspezies aggregieren im Verlauf der Kalzinierung bei 873 K. Sowohl höhere Heizraten beim Kalziniervorgang, als auch ein höheres Si/Al-Verhältnis des Trägermaterials verstärken die Neigung zur Aggregatbildung leicht. Die Verwendung des Katalysators für die SCR von NO führt zu weiterem Wachstum und zur Restrukturierung der FexOy-Cluster. Die Eisenkatalysatoren wurden weiterhin mittels in-situ Methoden (EPR, UV/VIS-DRS, FTIR) untersucht während der SCR von NO durch NH3 und Isobutan, der SCR von N2O mit CO, und im Strom der entsprechenden reinen Eduktgase. Die Ergebnisse korrelieren mit dem katalytischen Verhalten der Materialien. Verschiedene Fe3+-Spezies, welche sich durch ein unterschiedliches Redoxverhalten auszeichnen, wurden identifiziert. UV/VIS-Messungen erlauben die Schlußfolgerung, daß isolierte, oktaedrisch koordinierte Fe3+?Spezies leichter zu reduzieren sind als tetradrisch koordinierte. Im Gegensatz zu isoliertem Fe3+ lassen sich FexOx-Cluster leichter oxidieren als reduzieren, und verbleiben daher unter Reaktionsbedingungen trivalent. Durch ihr hohes Oxidationspotential kommt es, vor allem für die Reaktion mit Isobutan, zur unerwünschten Totaloxidation des Reduktanden. Der Anteil isolierter Fe3+ Spezies korreliert mit der Aktivität der Katalysatoren für die SCR von NO und N2O. Weiterhin hängt zumindest für die Reaktion zwischen N2O und CO der Reaktionsmechanismus von der Art der vorliegenden Eisenspezies ab: an isolierten Plätzen erfolgt die Reduktion des N2O an dem an Fe3+ gebundenen CO. An FexOy-Clustern hingegen läuft die Reaktion als Redoxprozeß (Fe3+ / Fe2+) unter Bildung eines radikalischen Intermediates O-. Der Einfluß der Porengeometrie des Trägermaterials auf die katalytische Aktivität wurde an Katalysatoren mit ähnlichem Eisengehalt und ähnlicher Art und Verteilung der Eisenspezies studiert (Fe-MFI, Fe-SBA-15). Die drastisch höhere Aktivität von Fe-MFI belegt, daß die Lokalisierung der aktiven Komponente in einer Pore mit passender Geometrie (Größe und Struktur) essentiell für die katalytischen Eigenschaften ist. Als weitere, die Aktivität stark beeinflussen Größe, wurde für die Reaktion von NO mit Ammoniak und auch mit Isobutan die Azidität identifiziert, die jedoch für die katalytische Zersetzung oder Reduktion mit N2O keine Rolle spielt. / The reduction of nitrogen oxides (NOx and N2O) was investigated over Fe-catalysts (Fe-MFI, Fe-beta and Fe-SBA-15) which were prepared by different methods have been analyzed by EPR and UV/VIS-DRS ex situ after synthesis, calcination and use in catalysis as well as in situ during calcination. It was found that aggregated species are formed at the expense of isolated Fe species upon calcination at 873 K, and that aggregate formation is slightly favored by calcination with higher heating rates as well as by high Si/Al ratio of the support. Use in SCR of NO leads to further growth and restructuring of FexOy clusters. These Fe-catalysts were studied by in situ EPR, in situ UV/VIS-DRS and in situ FT-IR spectroscopy during SCR of NO with NH3 or isobutane and during SCR of N2O with CO as well as during interaction with single feed components. The results were related to the catalytic behaviour. Different types of isolated Fe3+ sites with different reducibility were identified. Based on FT-IR results which revealed that NO reacts preferably with trivalent Fe, it is concluded that Fe3+ ions reduced under reaction conditions to Fe2+ do probably not contribute to catalytic activity. In general, the degree of steady-state Fe site reduction during NH3-SCR is markedly lower than during isobutane-SCR. This might be the reason for the lower activity of Fe-catalysts in the latter reaction. UV/VIS-DRS results suggest that isolated Fe3+ in octahedral coordination is easier reduced than tetrahedral Fe3+. In contrast to isolated Fe3+ species, FexOy clusters are much faster reoxidized than reduced and, thus, remain essentially trivalent under reaction conditions. Due to their higher oxidation potential, they cause undesired total oxidation of the reductant being much more severe in the case of isobutane. A correlation was found between the fraction of isolated Fe+3 sites in the catalysts and their activity for SCR of NO and N2O. The reaction mechanism of SCR of N2O with CO is Fe site dependent. Over isolated Fe sites, the reduction of N2O occurs via coordinated CO species on Fe3+ sites. The reaction over FexOy sites proceeds via a redox Fe3+/Fe2+ process with intermediate formation of O- radicals. The effect of pore geometry of the support on the catalytic activity was studied by comparing catalytic performance of Fe-MFI and Fe-SBA-15 which contain similar iron content and show similar nature and distribution of Fe species as evidenced by UV/VIS-DRS and EPR. Fe-MFI revealed to be much more active than Fe-SBA-15 in all reactions studied. This clearly illustrates that the confinement of the iron species in pores of suitable geometry (structure and size) is essential to originate their remarkable catalytic properties. Acidity is essential for SCR of NO with NH3 or isobutane but it is not mandatory for direct decomposition or SCR of N2O.
|
17 |
Noble Metal And Base Metal Ion Substituted Ceo2 And Tio2 : Efficient Catalysts For Nox AbatementRoy, Sounak 12 1900 (has links)
In recent times, as regulations and legislations for exhaust treatment have become more stringent, a major concern in the arena of environmental catalysis is to find new efficient and economical exhaust treatment catalysts. Chapter 1 is a review of the current status of various NOx abatement techniques and understanding the role of “auto-exhaust catalysts” involved therein. Chapter 2 presents the studies on synthesis of ionically substituted precious metal ions like Pd2+, Pt2+ and Rh3+ in CeO2 matrix and their comparative three-way catalytic performances for NO reduction by CO, as well as CO and hydrocarbon oxidation. Ce0.98Pd0.02O2- showed better catalytic activity than ionically dispersed Pt or Rh in CeO2. The study in Chapter 3 aims at synthesizing 1 atom% Pd2+ ion in TiO2 in the form of Ti0.99Pd0.01O2- with oxide ion vacancy. A bi-functional reaction mechanism for CO oxidation by O2 and NO reduction by CO was proposed. For NO reduction in presence of CO, the model based on competitive adsorption of NO and CO on Pd2+, NO chemisorption and dissociation on oxide ion vacancy fits the experimental data. The rate parameters obtained from the model indicates that the reactions are much faster over this catalyst compared to other catalysts reported in the literature. In Chapter 4 we present catalytic reduction of NO by H2 over precious metal substituted TiO2 (Ti0.99M0.01O2-, where M = Ru, Rh, Pd, Pt) catalysts. The rate of NO reduction by H2 depends on the reducibility of the catalysts. Chapter 5 presents the studies on reduction of NO by NH3 in presence of excess oxygen. 10 atom % of first row transition metal ions (Ti0.9M0.1O2-, where M = Cr, Mn, Fe, Co and Cu) were substituted in anatase TiO2 and TPD study showed that the Lewis and Bronsted acid sites are adsorption sites for NH3, whereas NO is found to dissociatively chemisorbed in oxide ion vacancies. The mechanism of the low temperature catalytic activity of the SCR and the selectivity of the products were studied to understand the mechanism by studying the by-reactions like ammonia oxidation by oxygen. A new catalyst Ti0.9Mn0.05Fe0.05O2- has shown low temperature activity with a broad SCR window from 200 to 400 °C and more selectivity than commercial vanadium-oxides catalysts. We attempted NO dissociation by a photochemical route with remarkable success. In Chapter 6 we report room temperature photocatalytic activity of Ti0.99Pd0.01O2- for NO reduction and CO oxidation by creating redox adsorption sites and utilizing oxide ion vacancy in the catalyst. The reduction of NO is carried out both in the presence and in the absence of CO. Despite competitive adsorption of NO and CO on the Pd2+ sites, the rate of reduction of NO is two orders of magnitude higher than unsubstituted TiO2. High rates of photo-oxidation of CO with O2 over Ti0.99Pd0.01O2- were observed at room temperature. In Chapter 7 the results are summarized and critical issues are addressed. Novel idea in this thesis was to see if both noble metal ions and base metal ions substituted in TiO2 and CeO2 reducible supports can act as better active sites than the corresponding metal atoms in their zero valent state.
|
18 |
Analisi del rischio ed impatto ambientale della produzione di energia elettrica utilizzando sorgo da biomassa / RISK ASSESSMENT AND ENVIRONMENTAL IMPACT ANALYSIS OF ELECTRICITY GENERATION FROM BIOMASS SORGHUM / RISK ASSESSMENT AND ENVIRONMENTAL IMPACT ANALYSIS OF ELECTRICITY GENERATION FROM BIOMASS SORGHUMSERRA, PAOLO 17 March 2016 (has links)
Questa tesi di dottorato analizza l’utilizzo del sorgo (Sorghum bicolour (L.) Moench) al fine di produrre energia elettrica, tramite combustione diretta della biomassa. Il focus della tesi è stato quello di sottolineare i benefici ed i rischi associati all’uso di tre genotipi di sorgo caratterizzati da diversa lunghezza del ciclo culturale (precoce, medio-tardivo e tardivo).
La dinamica e la durata del processo di essicazione in campo sono state simulate attraverso un modello ad hoc (“sorghum haying model”), il quale integrato a CropSyst, è stato utilizzato per realizzare un’analisi del rischio produttivo stimando le perdite di biomassa (respirazione e meccanizzazione), ed i mancati affienamenti. Nell’analisi del rischio vengono stimati il numero di ettari necessari e la probabilità di eccedere la soglia di 64.000 ton ss anno-1 necessari per l’alimentazione di una centrale nell’Oltrepò pavese .
Inoltre uno studio di Life Cycle Assessment è stato condotto per la valutazione dell’impatto ambientale dell’utilizzo del sorgo integrato a quello della paglia per il completamento del fabbisogno totale della centrale 94.000 ton ss anno-1. Particolare attenzione inoltre è stata data alla variazione del contenuto di C organico del suolo dovuto alla rimozione della paglia ed all’interramento dei mancati affienamenti di sorgo. Il genotipo precoce mostra le migliori performance produttive ed energetiche oltre che la più alta probabilità di eccedere la soglia di 64.000 ton ss anno-1. Lo studio di LCA non ha mostrato differenze significative tra i genotipi anche se il minor impatto ambientale, è stato evidenziato dal genotipo tardivo conseguenza dell’interramento della più alta quantità di mancati affienamenti. / This PhD thesis explores the use of sorghum (Sorghum bicolour (L.) Moench) as a dedicated bio-energy crop and highlights the benefits and risks associated with the use of early, medium-late and late sorghum genotypes to generate electricity by direct combustion in a biomass power plant.
The dynamics and duration of the field drying process were simulated through the development of a specific model ("sorghum haying model"), which integrated with CropSyst, was used to perform a production risk assessment analysis estimating the biomass losses (respiration and mechanical), the haymaking failures and consequently to quantify the amount of dry baled biomass available for the power plant. In addition, the number of hectares needed to plant sorghum and the probability to exceed the threshold of 64000 Mg DM y-1, necessary to feed a biomass power plant in Oltrepò Pavese, were estimated.
A complete Life Cycle Assessment (LCA) study was carried out in order to evaluate the environmental impact of the three sorghum genotypes involved in this study. The LCA study takes into consideration the use of winter wheat straw as an additional biomass source to satisfy the total biomass power plant needs (94000 Mg DM y-1). Particular attention was given to the soil organic C change (ΔSOC) due to straw removal and haymaking failures soil incorporation.
Early genotype showed the best biomass production and energy performance as well as the highest probability to exceed the threshold of 64000 Mg DM y-1. The LCA results did not show significant differences between genotypes although the lower environmental impact, has been achieved by the late genotype due to the highest amount of haymaking failures incorporated in the soil.
|
Page generated in 0.027 seconds