• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1878
  • 58
  • 57
  • 38
  • 37
  • 37
  • 19
  • 14
  • 12
  • 7
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 2723
  • 2723
  • 1120
  • 977
  • 845
  • 620
  • 581
  • 496
  • 493
  • 470
  • 447
  • 444
  • 419
  • 414
  • 384
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Let there be light... Characterizing the Effects of Adverse Lighting on Semantic Segmentation of Wound Images and Mitigation using a Deep Retinex Model

Iyer, Akshay B. 14 May 2020 (has links)
Wound assessment using a smartphone image has recently emerged as a novel way to provide actionable feedback to patients and caregivers. Wound segmentation is an important step in image-based wound assessment, after which the wound area can be analyzed. Semantic segmentation algorithms for wounds assume favorable lighting conditions. However, smartphone wound imaging in natural environments can encounter adverse lighting that can cause several errors during semantic segmentation of wound images, which in turn affects the wound analysis. In this work, we study and characterize the effects of adverse lighting on the accuracy of semantic segmentation of wound images. Our findings inform a deep learning-based approach to mitigate the adverse effects. We make three main contributions in this work. First, we create the first large-scale Illumination Varying Dataset (IVDS) of 55440 images of a wound moulage captured under systematically varying illumination conditions and with different camera types and settings. Second, we characterize the effects of changing light intensity on U-Net’s wound semantic segmentation accuracy and show the luminance of images to be highly correlated with the wound segmentation performance. Especially, we show low-light conditions to deteriorate segmentation performance highly. Third, we improve the wound Dice scores of U-Net for low-light images to up to four times the baseline values using a deep learning mitigation method based on the Retinex theory. Our method works well in typical illumination levels observed in homes/clinics as well for a wide gamut of lighting like very dark conditions (20 Lux), medium-intensity lighting (750 - 1500 Lux), and even very bright lighting (6000 Lux).
182

COMPARISON OF PRE-TRAINED CONVOLUTIONAL NEURAL NETWORK PERFORMANCE ON GLIOMA CLASSIFICATION

Unknown Date (has links)
Gliomas are an aggressive class of brain tumors that are associated with a better prognosis at a lower grade level. Effective differentiation and classification are imperative for early treatment. MRI scans are a popular medical imaging modality to detect and diagnosis brain tumors due to its capability to non-invasively highlight the tumor region. With the rise of deep learning, researchers have used convolution neural networks for classification purposes in this domain, specifically pre-trained networks to reduce computational costs. However, with various MRI modalities, MRI machines, and poor image scan quality cause different network structures to have different performance metrics. Each pre-trained network is designed with a different structure that allows robust results given specific problem conditions. This thesis aims to cover the gap in the literature to compare the performance of popular pre-trained networks on a controlled dataset that is different than the network trained domain. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
183

Automatic Classification of Small Group Dynamics using Speech and Collaborative Writing

January 2020 (has links)
abstract: Students seldom spontaneously collaborate with each other. A system that can measure collaboration in real time could be useful, for example, by helping the teacher locate a group requiring guidance. To address this challenge, the research presented here focuses on building and comparing collaboration detectors for different types of classroom problem solving activities, such as card sorting and handwriting. Transfer learning using different representations was also studied with a goal of building collaboration detectors for one task can be used with a new task. Data for building such detectors were collected in the form of verbal interaction and user action logs from students’ tablets. Three qualitative levels of interactivity were distinguished: Collaboration, Cooperation and Asymmetric Contribution. Machine learning was used to induce a classifier that can assign a code for every episode based on the set of features. The results indicate that machine learned classifiers were reliable and can transfer. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2020
184

Contributions to In Silico Genome Annotation

Kalkatawi, Manal M. 30 November 2017 (has links)
Genome annotation is an important topic since it provides information for the foundation of downstream genomic and biological research. It is considered as a way of summarizing part of existing knowledge about the genomic characteristics of an organism. Annotating different regions of a genome sequence is known as structural annotation, while identifying functions of these regions is considered as a functional annotation. In silico approaches can facilitate both tasks that otherwise would be difficult and timeconsuming. This study contributes to genome annotation by introducing several novel bioinformatics methods, some based on machine learning (ML) approaches. First, we present Dragon PolyA Spotter (DPS), a method for accurate identification of the polyadenylation signals (PAS) within human genomic DNA sequences. For this, we derived a novel feature-set able to characterize properties of the genomic region surrounding the PAS, enabling development of high accuracy optimized ML predictive models. DPS considerably outperformed the state-of-the-art results. The second contribution concerns developing generic models for structural annotation, i.e., the recognition of different genomic signals and regions (GSR) within eukaryotic DNA. We developed DeepGSR, a systematic framework that facilitates generating ML models to predict GSR with high accuracy. To the best of our knowledge, no available generic and automated method exists for such task that could facilitate the studies of newly sequenced organisms. The prediction module of DeepGSR uses deep learning algorithms to derive highly abstract features that depend mainly on proper data representation and hyperparameters calibration. DeepGSR, which was evaluated on recognition of PAS and translation initiation sites (TIS) in different organisms, yields a simpler and more precise representation of the problem under study, compared to some other hand-tailored models, while producing high accuracy prediction results. Finally, we focus on deriving a model capable of facilitating the functional annotation of prokaryotes. As far as we know, there is no fully automated system for detailed comparison of functional annotations generated by different methods. Hence, we developed BEACON, a method and supporting system that compares gene annotation from various methods to produce a more reliable and comprehensive annotation. Overall, our research contributed to different aspects of the genome annotation.
185

Learning High-Dimensional Critical Regions for Efficient Robot Planning

January 2020 (has links)
abstract: Robot motion planning requires computing a sequence of waypoints from an initial configuration of the robot to the goal configuration. Solving a motion planning problem optimally is proven to be NP-Complete. Sampling-based motion planners efficiently compute an approximation of the optimal solution. They sample the configuration space uniformly and hence fail to sample regions of the environment that have narrow passages or pinch points. These critical regions are analogous to landmarks from planning literature as the robot is required to pass through them to reach the goal. This work proposes a deep learning approach that identifies critical regions in the environment and learns a sampling distribution to effectively sample them in high dimensional configuration spaces. A classification-based approach is used to learn the distributions. The robot degrees of freedom (DOF) limits are binned and a distribution is generated from sampling motion plan solutions. Conditional information like goal configuration and robot location encoded in the network inputs showcase the network learning to bias the identified critical regions towards the goal configuration. Empirical evaluations are performed against the state of the art sampling-based motion planners on a variety of tasks requiring the robot to pass through critical regions. An empirical analysis of robotic systems with three to eight degrees of freedom indicates that this approach effectively improves planning performance. / Dissertation/Thesis / Masters Thesis Computer Science 2020
186

Robust Deep Learning Through Selective Feature Regeneration.

January 2020 (has links)
abstract: In recent years, the widespread use of deep neural networks (DNNs) has facilitated great improvements in performance for computer vision tasks like image classification and object recognition. In most realistic computer vision applications, an input image undergoes some form of image distortion such as blur and additive noise during image acquisition or transmission. Deep networks trained on pristine images perform poorly when tested on such distortions. DNN predictions have also been shown to be vulnerable to carefully crafted adversarial perturbations. Specifically, so-called universal adversarial perturbations are image-agnostic perturbations that can be added to any image and can fool a target network into making erroneous predictions. This work proposes selective DNN feature regeneration to improve the robustness of existing DNNs to image distortions and universal adversarial perturbations. In the context of common naturally occurring image distortions, a metric is proposed to identify the most susceptible DNN convolutional filters and rank them in order of the highest gain in classification accuracy upon correction. The proposed approach called DeepCorrect applies small stacks of convolutional layers with residual connections at the output of these ranked filters and trains them to correct the most distortion-affected filter activations, whilst leaving the rest of the pre-trained filter outputs in the network unchanged. Performance results show that applying DeepCorrect models for common vision tasks significantly improves the robustness of DNNs against distorted images and outperforms other alternative approaches. In the context of universal adversarial perturbations, departing from existing defense strategies that work mostly in the image domain, a novel and effective defense which only operates in the DNN feature domain is presented. This approach identifies pre-trained convolutional features that are most vulnerable to adversarial perturbations and deploys trainable feature regeneration units which transform these DNN filter activations into resilient features that are robust to universal perturbations. Regenerating only the top 50% adversarially susceptible activations in at most 6 DNN layers and leaving all remaining DNN activations unchanged can outperform existing defense strategies across different network architectures and across various universal attacks. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
187

Efficient and Secure Deep Learning Inference System: A Software and Hardware Co-design Perspective

January 2020 (has links)
abstract: The advances of Deep Learning (DL) achieved recently have successfully demonstrated its great potential of surpassing or close to human-level performance across multiple domains. Consequently, there exists a rising demand to deploy state-of-the-art DL algorithms, e.g., Deep Neural Networks (DNN), in real-world applications to release labors from repetitive work. On the one hand, the impressive performance achieved by the DNN normally accompanies with the drawbacks of intensive memory and power usage due to enormous model size and high computation workload, which significantly hampers their deployment on the resource-limited cyber-physical systems or edge devices. Thus, the urgent demand for enhancing the inference efficiency of DNN has also great research interests across various communities. On the other hand, scientists and engineers still have insufficient knowledge about the principles of DNN which makes it mostly be treated as a black-box. Under such circumstance, DNN is like "the sword of Damocles" where its security or fault-tolerance capability is an essential concern which cannot be circumvented. Motivated by the aforementioned concerns, this dissertation comprehensively investigates the emerging efficiency and security issues of DNNs, from both software and hardware design perspectives. From the efficiency perspective, as the foundation technique for efficient inference of target DNN, the model compression via quantization is elaborated. In order to maximize the inference performance boost, the deployment of quantized DNN on the revolutionary Computing-in-Memory based neural accelerator is presented in a cross-layer (device/circuit/system) fashion. From the security perspective, the well known adversarial attack is investigated spanning from its original input attack form (aka. Adversarial example generation) to its parameter attack variant. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
188

Earthquake Detection using Deep Learning Based Approaches

Audretsch, James 17 March 2020 (has links)
Earthquake detection is an important task, focusing on detecting seismic events in past data or in real time from seismic time series. In the past few decades, due to the increasing amount of available seismic data, research in seismic event detection shows remarkable success using neural networks and other machine learning techniques. However, creating high quality labeled data sets is still a manual process that demands tremendous amount of time and expert knowledge, and is stifling big data innovation. When compiling a data set, it is unclear how many earthquakes and noise are mislabeled. Another challenge is how to promote the general applicability of the machine learning based models to different geographical regions. The models trained by data sets from one location should be applicable to the detection at other locations. This thesis explores the most popular deep learning model, convolutional neural networks (CNN), to build a single location detection model. In addition, we build more robust generalized earthquake detection models using transfer learning and meta learning. We also introduce a process for generating high quality labeled datasets. Our technique achieves high detection accuracy even on low signal to noise ratio events. The AI techniques explored in this research have potential to be transferred to other domains that utilize signal processing. There are a myriad of potential applications, with audio processing probably being one of the most directly relevant. Any field that deals with waveforms (e.g. seismic, audio, light) can utilize the developed techniques.
189

Domain adaptive learning with disentangled features

Peng, Xingchao 18 February 2021 (has links)
Recognizing visual information is crucial for many real artificial-intelligence-based applications, ranging from domestic robots to autonomous vehicles. However, the success of deep learning methods on visual recognition tasks is highly dependent on access to large-scale labeled datasets, which are expensive and cumbersome to collect. Transfer learning provides a way to alleviate the burden of annotating data, which transfers the knowledge learned from a rich-labeled source domain to a scarce-labeled target domain. However, the performance of deep learning models degrades significantly when testing on novel domains due to the presence of domain shift. To tackle the domain shift, conventional domain adaptation methods diminish the domain shift between two domains with a distribution matching loss or adversarial loss. These models align the domain-specific feature distribution and the domain-invariant feature distribution simultaneously, which is sub-optimal towards solving deep domain adaptation tasks, given that deep neural networks are known to extract features in which multiple hidden factors are highly entangled. This thesis explores how to learn effective transferable features by disentangling the deep features. The following questions are studied: (1) how to disentangle the deep features into domain-invariant and domain-specific features? (2) how would feature disentanglement help to learn transferable features under a synthetic-to-real domain adaptation scenario? (3) how would feature disentanglement facilitate transfer learning with multiple source or target domains? (4) how to leverage feature disentanglement to boost the performance in a federated system? To address these needs, this thesis proposes deep adversarial feature disentanglement: a class/domain identifier is trained on the labeled source domain and the disentangler generates features to fool the class/domain identifier. Extensive experiments and empirical analysis demonstrate the effectiveness of the feature disentanglement method on many real-world domain adaptation tasks. Specifically, the following three unsupervised domain adaptation scenarios are explored: (1) domain agnostic learning with disentangled representations, (2) unsupervised federated domain adaptation, (3) multi-source domain adaptation.
190

An intelligent flood evacuation model based on deep learning of various flood scenarios / 様々な洪水シナリオに対する深層学習に基づく水害避難行動モデル

Li, Mengtong 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23173号 / 工博第4817号 / 新制||工||1753(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 堀 智晴, 教授 田中 茂信, 教授 角 哲也 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0874 seconds