• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of deoxynivalenol and deepoxy-deoxynivalenol on bovine ovarian theca cell function

Torabi, Mohammad Ali 04 1900 (has links)
La mycotoxine déoxynivalénol (DON) et son métabolite déépoxy-déoxynivalenol (DOM-1) ont des effets significatifs sur la modification de la fonction des cellules thècales de l’ovaire bovin. L'objectif de cette étude était d'identifier les différentes voies de signalisation impliquées dans le mécanisme d'action de DON et DOM-1 par la spectrométrie de masse. Méthodes: Les cellules thécales de l'ovaire bovin ont été récoltées à partir des vaches adultes, indépendamment du stade du cycle œstral, et ont été cultivées à une densité de 500000 cellules viables dans 1 ml de milieu de McCoy pendant 5 jours. Les cellules ont ensuite été traitées au jour 5 de la culture avec 1 ng/ml de DON ou DOM-1 pendant 30 minutes et des échantillons cellulaires de protéins totales ont été préparés pour spectrométrie de masse. Résultats: la spectrométrie de masse a montré que DON et DOM-1 induisent une surexpression simultanée de ERK1/2, MAPK14 (p38alpha) et MAPK13 (p38delta). La spectrométrie de masse a également indiqué que 94 peptides ont été surexprimés tels que GNGT1, EDN1 et YWHAB. Ils régulent la plupart des voies de prolifération des cellules et sont impliqués dans la biosynthèse des lipides et des glucides. Néanmoins, 255 peptides ont été régulés à la baisse, tels que CALR3, PTGES3, RAD21, ACVR2B et TGFBR1 dont leurs activités sont principalement l'activation ou la désactivation des processus apoptotiques, et le métabolisme du glucose et de la choline. Nos résultats montrent que DON et DOM-1, à une dose de 1 ng/ml, ont le potentiel de stimuler la surexpression de MAPK distinctes et réguler négativement les voies de signalisation spécifiques qui stimulent la prolifération les cellules de la thèque de l’ovaire de bovin. / The mycotoxin deoxynivalenol (DON) and its metabolite deepoxy-DOM-1 have significant effects on bovine ovarian theca cell function. The objective of this study was to identify different signaling pathways involved in the mechanism of action of DON and DOM-1 by mass spectrometry. Methods: bovine ovarian theca cells were harvested from adult cows independently of the stage of the estrous cycle, and were cultured at a density of 500000 viable cells in 1 ml McCoy’s medium for 5 days. The cells were then treated on day 5 of culture with 1 ng/mL DON or DOM-1 for 30 minutes and total cell protein was collected for mass spectrometry. Results from mass spectrometry showed that both DON and DOM-1 induce simultaneous upregulation of ERK1/2 , MAPK14 (p38alpha) and MAPK13 (p38delta). Mass spectrometry also indicated that 94 peptides such as GNGT1, EDN1 and YWHAB were upregulated. They mostly regulate cell proliferation pathways and are involved in biosynthesis of lipid and carbohydrates. Nevertheless, 255 peptides such as CALR3, PTGES3, RAD21, ACVR2B and TGFBR1 were downregulated whose activities are mainly activation or deactivation of apoptotic processes, and glucose and choline metabolism. Our findings show that both DON and DOM-1 at least at a low dose (1 ng/ml) have the potential to stimulate upregulation of distinct MAPKs and downregulate specific signaling pathways that stimulate bovine ovarian theca cell proliferation.
2

Toxicity of three biological derivatives of deoxynivalenol : deepoxy-deoxynivalenol, 3-epi-deoxynivalenol and deoxynivalenol-3-glucoside on pigs / Toxicité de trois dérivés biologiques du déoxynivalénol : déepoxy-déoxynivalénol, 3-epidéoxynivalénol et édoxynivalénol-3-glucoside chez le porc

Pierron, Alix 28 June 2016 (has links)
Les mycotoxines sont des métabolites secondaires de moisissures contaminant de façon naturelle de nombreuses denrées alimentaires, notamment les céréales. Le déoxynivalénol (DON), produit par Fusarium sp., est la mycotoxine la plus répandue dans le monde. Du fait de sa grande stabilité chimique, le DON est difficile à éliminer, et se retrouve dans les céréales et les produits finis ou il induit des effets toxiques pour l'homme et l'animal. De nouvelles stratégies de lutte sont mises en places, telle la transformation biologique utilisant des bactéries ou des plantes. En effet certaines bactéries possèdent des enzymes capables de transformer le DON en de nouveaux composés, le déepoxy-déoxynivalénol (DOM-1) et le 3-épi-déoxynivalénol (3-epi-DON). De plus, certaines plantes sont naturellement capables de transformer le DON dans le but de l'éliminer et de le détoxifier, formant ainsi le deoxynivalénol-3-ß-D-glucoside (D3G). L'objectif de cette thèse était d'évaluer la toxicité de ces dérivés du DON au niveau de l'intestin et du système immunitaire par le biais d'analyses in silico, in vitro, ex vivo et in vivo. Les tests de toxicité in vitro sur la lignée humaine intestinale cellulaire Caco-2 montrent que le DOM-1, le 3-epi-DON et le D3G n'étaient pas cytotoxiques, ils ne modifiaient ni la viabilité, ni la fonction de barrière des cellules, mesurée par la résistance électrique transépithéliale. Les tests de toxicité ex vivo sur des explants jéjunum porcin ont montré que le DOM-1, le 3-epi-DON ou le D3G n'induisaient pas de modifications histomorphologiques. En revanche, les explants exposés au DON montraient des lésions morphologiques et une régulation positive de l'expression des cytokines pro-inflammatoires. L'impact de ces trois dérivés a été également analysé sur l'expression de l'ensemble des gènes du tissu, avec une analyse microarray. Ceci a montré que ces dérivés du DON n'induisaient aucun changement dans l'expression des gènes par rapport au groupe contrôle. Le DON quand a lui exprimait différentiellement 747 sondes, correspondantes à 333 gènes impliqués dans l'immunité, la réponse inflammatoire, le stress oxydatif, la mort cellulaire, le transport moléculaire et la fonction mitochondriale. L'analyse in silico a montré que le D3G, contrairement au DON était incapable de se lier au site-A du ribosome, principale cible de la toxicité pour le DON. Les deux dérivés microbiens eux, étaient capables de se fixer au site-A au sein du ribosome, mais contrairement au DON ils ne formaient que deux liaisons hydrogènes au lieu de trois. De plus, ces trois dérivés n'induisaient pas de stress ribotoxique, d'activation des MAPKs (mitogen-activated protein kinases), et de réponse pro-inflammatoire. Une étude complémentaire a été menée in vivo pour évaluer la toxicité du DOM-1 chez le porc (gavage pendant 21 jours avec .0.14mg / kg de poids vif). Les résultats ont montré que le DOM-1, contrairement au DON n'induisait pas les effets toxiques du DON au niveau des paramètres zootechniques (pas de vomissements, aucune diminution de la consommation alimentaire ou de perte de poids), sur l'intestin et le foie (pas de dommages tissulaires), ou sur la réponse immunitaire (pas de réponse inflammatoire induite). En conclusion, nos résultats montrent l'efficacité de ces transformations enzymatiques. La déepoxydation et l'épimérisation bactérienne, ainsi que la glycosylation par les plantes permettent de sensiblement diminuer la toxicité du DON, passant par une absence de toxicité sur le ribosome avec une absence d'activation des MAPKs et de réponses inflammatoires. Dans ce contexte de contamination par les mycotoxines, ces méthodes de luttes alternatives semblent être des approches prometteuses. / The Fusarium sp. mycotoxin deoxynivalenol (DON) is one of the most frequently widespread mycotoxin worldwide. Due to its high structural stability, the elimination of DON, once present in cereals or feed materials, becomes difficult. Thereby, it is present in many cereals and final feed products, inducing several toxic effects on human and animals, and causing big economic losses. New strategies of to fight against mycotoxins were developed, as biological transformation, either by the use of bacteria or plants. Indeed, some microorganisms are able to transform DON in new products, by enzymatic reaction, forming the deepoxy-deoxynivalenol (DOM-1) and the 3-epi-deoxynivalenol (3-epi-DON). Moreover, some plants naturally own the capacity to glycosylate DON in the aim to detoxify it, forming the deoxynivalenol-3-ß-D-glucoside (D3G). The aim of this thesis was to assess the toxicity of these DON derivatives, on the intestine and immune response, using several approaches such as in silico, in vitro, ex vivo and in vivo models. On the human intestinal Caco-2 cell line, DOM-1, 3-epi-DON and D3G were not cytotoxic; they did not alter its viability and barrier function, as measured by the trans epithelial electrical resistance. The expression profile of DOM-1, 3-epi-DON and D3G-treated jejunal explants was similar to that of controls and these explants did not show any histomorphology alteration. On the other hand, the treatment of intestinal explants with DON, induced morphological lesions and upregulated the expression of proinflammatory cytokines. The impact of these three derivatives was also studied on intestinal explants with a pan-genomic transcriptomic analysis. Results show that the derivatives of DON did not induce any change on the gene expression in comparison to the control-treated explants. In contrary, DON-treated explants differentially expressed 747 probes, representing 323 genes involved in immune and inflammatory responses, oxidative stress, cell death, molecular transport and mitochondrial function. In silico analysis revealed that D3G, opposing to DON, was unable to bind to the A site of the ribosome, which is the main target for DON toxicity. Both DOM-1 and 3-epi-DON were able to fit into the pockets of the A site of the ribosome but only by forming two hydrogen bonds, while in this position, DON forms three hydrogen bonds. Moreover, the three derivatives do not elicit a ribotoxic stress, MAPKinase activation, and inflammatory response. Then, an in vivo study was carried out to assess the toxicity of DOM-1 on pig (feed forced during 21 days at 0.14 mg/Kg BW). The results showed that DOM-1 does not have as much toxic effects as DON on zootechnical parameters (no emesis induced, no decrease of food consumption or weight loss observed), on intestine and liver (no tissues damages), or on the immune response (no inflammatory response induced). Our data demonstrate that bacterial de-epoxidation or epimerization of deepoxy-DON modified its interaction with the ribosome, leading to an absence of MAPKinase activation and toxicity; and that the glycosylation of DON suppresses its ability to bind to the ribosome and decreases its intestinal toxicity. The mycotoxin deoxynivalenol (DON) remains an important challenge in many regions in the world. Thus, these biological detoxifications of DON seem to represent a new promising approach helping manage the problem of its contamination.

Page generated in 0.057 seconds