• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 11
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Quantized Crystal Plasticity Model for Nanocrystalline Metals: Connecting Atomistic Simulations and Physical Experiments

Li, Lin 21 March 2011 (has links)
No description available.
12

Emplacement of the Santa Rita Flat pluton and kinematic analysis of cross cutting shear zones, eastern California

Vines, John Ashley 05 January 2000 (has links)
This study documents the deformation history of the Santa Rita Flat pluton, eastern California, from the time of emplacement to post-emplacement transpressional shearing, and consists of manuscripts that make up three chapters. The first chapter addresses the emplacement of the Santa Rita Flat pluton using anisotropy of magnetic susceptibility (AMS). The second chapter describes the kinematic analysis of cross-cutting shear zones within the western margin of the pluton. The third chapter is an informal paper on the U/Pb dating of two sheared felsic dikes from the pluton. AMS of the Santa Rita Flat pluton indicates that the paramagnetic and ferromagnetic minerals define a foliation which is arched into an antiformal structure in the central to southern parts of the pluton. The northern part of the pluton displays an east-west striking magnetic foliation which lacks a fold-like geometry. Previously published field mapping and petrologic surveys of the pluton and surrounding wall rocks indicate that the southern margin and northern part of the Santa Rita Flat pluton represents the roof and core of the pluton, respectively. Integration of our analysis of the internal structure of the pluton with previously published work on the regional structure of the surrounding metasedimentary wall rocks, suggests that the pluton may have initially been intruded as a sill-like or "saddle reef" structure along a stratigraphically controlled mechanical discontinuity in the hinge zone of an enveloping regional-scale synform. Subsequent vertical inflation of this sill resulted in local upward doming of the overlying pluton roof and formation of the antiformal structure now observed at the current erosion level in the central-southern part of the pluton and overlying locally preserved roof rocks. No corresponding fold structure is indicated by AMS analysis in the northern part of the pluton, which is exposed at a deeper level, and represents a section closer to the pluton core. Emplacement of the Santa Rita Flat pluton at 164 Ma overlaps in time with regional deformation at ~185 - ~148 Ma (Middle - Late Jurassic) recognized in the southern Inyo Mountains. Northwest trending folds are pervasive along the western flank of the Inyo and White Mountains, and may have accommodated strains at the lateral tips of thrust faults which crop out in the southern Inyo Mountains. We speculate that space for initial emplacement of the Santa Rita Flat pluton may have been produced by layer-parallel slip and hinge-zone dilation, accompanied by axis-parallel slip during formation of a regional scale thrust-related synform. The Santa Rita shear system (SRSS) is composed of a series of discrete NW-SE striking steeply dipping shear zones that cut and plastically deform granitic rocks of the Santa Rita Flat pluton. The shear zones exhibit a domainal distribution of gently and steeply plunging stretching lineations, and are located at planar mechanical discontinuities between the granite and a series of felsic/mafic dikes which intrude the pluton. Mylonitized dikes within the shear zones contain syntectonic mineral assemblages not observed in dikes outside the shear zones, indicating that the dikes were intruded prior to shear zone development. Correlation with geometrically similar shear zones in the Sierra Nevada batholith to the west, suggests that the SRSS probably nucleated from a regional stress field in Cretaceous times (~90-78 Ma). Strain is heterogeneous within the shear zones, with local development of protomylonite, mylonite, ultramylonite and phyllonite. Strain heterogeneity within the granite is attributed to fluid infiltration and chemical reaction and alteration of feldspar to fine-grained mica. These deformation-induced mineral changes would have resulted in progressive mechanical weakening over time of rocks within the SRSS. The phyllonites occur predominantly within steeply lineated shear zones and contain mylonitized foliation-parallel quartz veins. The pattern of c-axis preferred orientation in these quartz veins indicates that deformation within the shear zones occurred under plane strain conditions. Locally, quartz veins also cut the foliation planes, reflecting high pore fluid pressures during evolution of the SRSS. These cross-cutting quartz veins are also plastically deformed, and their c-axis patterns indicate weak constrictional strains. The orientation of the shear zones, together with their strain paths, are used to develop a transpressional kinematic model for development of the SRSS within a progressively rotating stress field. / Master of Science
13

Orientations and magnitudes of paleostress in the Great Valley Province of northern Virginia

Vaughn, Ginger L. 25 August 2008 (has links)
Calcite c-axes and e-twin plane orientations were measured in both matrix cements and younger fracture fills from late Cambrian to Middle Ordovician age limestone samples taken from the NW and SE limbs of the Massanutten Syncline, located within the North Mountain thrust sheet. Paleostress magnitude estimates using the Rowe and Rutter (1990) twin density technique indicate a differential stress of 240±31 MPa for samples collected from both limbs of the syncline. Three distinct patterns of paleostress orientations (compression directions) have been detected in the samples; each pattern is observed on both the NW and SE limbs of the syncline. The first pattern, exhibited by calcite grains cementing late fractures, is characterized by a maximum of compression axes oriented sub-perpendicular to bedding possibly indicating either thrust sheet loading or stress refraction associated with folding. Samples in which calcite grains from both fracture fills and earlier matrix cements were measured are characterized by a bimodal distribution of compression axes—the first point maximum being oriented sub-perpendicular to bedding, the second maximum placing compression directions at low to moderate angles to bedding. Restoration of bedding to horizontal results in this second set of compression axes plunging to either the SE or NW, sub-parallel to the regional thrust transport direction. The third pattern, originating from early cements, places compression directions plunging to the NE-SW at angles which are sub-parallel to bedding. These compression directions do not seem to correlate with major tectonic movements or thrust sheet loading and may reflect stresses associated with either movement over lateral ramps or oblique thrusting. / Master of Science
14

Atomistic Simulations of Deformation Mechanisms in Ultra-Light Weight Mg-Li Alloys

Karewar, Shivraj 05 1900 (has links)
Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg using atomistic simulations. In the first part, I create a reliable and transferable concentration dependent embedded atom method (CD-EAM) potential for my molecular dynamics study of deformation. This potential describes the Mg-Li phase diagram, which accurately describes the phase stability as a function of Li concentration and temperature. Also, it reproduces the heat of mixing, lattice parameters, and bulk moduli of the alloy as a function of Li concentration. Most importantly, our CD-EAM potential reproduces the variation of stacking fault energy for basal, prismatic, and pyramidal slip systems that influences the deformation mechanisms as a function of Li concentration. This success of CD-EAM Mg-Li potential in reproducing different properties, as compared to literature data, shows its reliability and transferability. Next, I use this newly created potential to study the effect of Li addition on deformation mechanisms in Mg-Li nanocrystalline (NC) alloys. Mg-Li NC alloys show basal slip, pyramidal type-I slip, tension twinning, and two-compression twinning deformation modes. Li addition reduces the plastic anisotropy between basal and non-basal slip systems by modifying the energetics of Mg-Li alloys. This causes the solid solution softening. The inverse relationship between strength and ductility therefore suggests a concomitant increase in alloy ductility. A comparison of the NC results with single crystal deformation results helps to understand the qualitative and quantitative effect of Li addition in Mg on nucleation stress and fault energies of each deformation mode. The nucleation stress and fault energies of basal dislocations and compression twins in single crystal Mg-Li alloy increase while those for pyramidal dislocations and tension twinning decrease. This variation in respective values explains the reduction in plastic anisotropy and increase in ductility for Mg-Li alloys.
15

Cellulose Nanofibril Networks and Composites : Preparation, Structure and Properties

Henriksson, Marielle January 2008 (has links)
Träbaserade cellulosananofibriller är intressanta som förstärkande fas i polymera nanokompositer; detta främst på grund av den kristallina cellulosans höga styvhet och på grund av nanofibrillernas förmåga att bilda nätverk. Cellulosananofibriller kan användas i form av mikrokristallin cellulosa, MCC, som har lågt längd/diameter förhållande, eller i form av mikrofibrillerad cellulosa, MFC, med högt längd/diameter förhållande. Målet med det här arbetet är att studera struktur-egenskapsförhållanden för nanofibrillnätverk och kompositer. Nanokompositer baserade på MCC och termoplastisk polyuretan tillverkades genom in-situ polymerisation. Cellulosafibrillerna var väl dispergerade i matrisfasen och kompositen visade ökad styvhet, styrka samt brottöjning. Dessa förbättningar antas bero på stark interaktion mellan polyuretan och cellulosananofibrillerna. En metod som underlättar mikrofibrillering av massafiberns cellvägg under homogenisering har utvecklats. Massan förbehandlades med ett enzym innan homogenisering. Den här metoden förenklade mikrofibrilleringen och mekanismerna diskuteras. De resulterande MFC-nanofibrillerna hade högt längd/diameter förhållande. Filmer har tillverkats av MFC-nanofibriller och filmernas struktur samt mekaniska egenskaper har studerats. Röntgendiffraktion och SEM visar att nanofibrilerna är mer orienterade i planet än i rymden. SEM och densitetsmätningar visar även att filmerna har en porös struktur. Resultaten från dragprovning visade att filmernas brottstyrka är beroende av molekylvikten för cellulosan. Nanofibrillerna med högst molekylvikt visade en E-modul på 13.2 GPa, brottstyrkan var 214 MPa och brottöjningen 10.1%. Kompositer med hög fiberhalt har tillverkats genom tillsats av melaminformaldehyd till MFC-filmer. Dessa kompositer visar ökad styvhet och styrka på bekostnad av brottöjningen. Kompositer har också tillverkats genom impregnering av MFC-nätverk med en hyperförgrenad polymer som tvärbands. DMA visar två Tg för kompositerna med 0.26 och 0.43 volymfraktion nanofibriller; matrisens Tg samt ytterligare ett Tg vid högre temperatur. Detta motsvarar molekyler med lägre mobilitet på grund av ökad interaktion med nanofibrillernas ytor. / The cellulose nanofibril from wood is an interesting new material constituent that can provide strong reinforcement in polymer nanocomposites due to the high stiffness of the cellulose crystals and the network formation characteristics of the nanofibrils. Cellulose nanofibrils can be used either in the form of low aspect ratio microcrystalline cellulose, MCC, or as high aspect ratio microfibrillated cellulose, MFC. The objective is to study structure-property relationships for cellulose nanofibril networks and composites. Nanocomposites based on MCC and thermoplastic polyurethane were prepared by in-situ polymerization. The cellulose nanofibrils were successfully dispersed in the matrix and the composites showed improvements in stiffness, strength, as well as in strain-to-failure. Cellulose nanofibrils reinforce the physical rubber network by strong molecular interaction with the rubber. A method that facilitates microfibrillation of the pulp cell wall during homogenization has been developed. The pulps were treated with a combination of beating and enzymatic treatment prior to homogenization. The enzymatic pretreatment was found to facilitate the microfibrillation and the mechanisms are discussed. The resulting MFC nanofibrils were of high aspect ratio. Cellulose nanofibril networks of high toughness were prepared from MFC and studied with respect to the structure and mechanical properties. These films have a porous structure and the nanofibrils are more in-plane than in-space oriented. Tensile testing showed that the strength is dependent on the average molecular weight of the cellulose. The MFC of the highest molecular weight showed a modulus of 13.2 GPa, tensile strength as high as 214 MPa and 10.1% strain-to-failure, at a porosity of 28%. Composites of high fiber content have been prepared by addition of melamine formaldehyde to MFC films. These composites show increased stiffness and strength, at the cost of strain-to-failure. Composites were also prepared by impregnating MFC nanofibril networks with a hyperbranched polymer. The matrix was crosslinked and strong interactions with the nanofibrils were formed. By DMA two Tg’s were observed for the composites with 0.26 and 0.43 volume fraction nanofibrils. The Tg of the matrix was observed as well as a Tg at higher temperatures. This corresponds to molecules with constrained mobility by increased interactions with the cellulose nanofibril surfaces. / QC 20100810
16

Phase transformations in shock compacted magnetic materials

Wehrenberg, Christopher 17 January 2012 (has links)
Shock compaction experiments were performed on soft magnetic phases Fe₄N and Fe₁₆N₂, and hard magnetic phases Nd₂Fe₁₄B and Sm₂Fe₁₇N₃ in order to determine their thermo-mechanical stability during shock loading and explore the possibility of fabricating a textured nanocomposite magnet. Gas gun experiments performed on powders pressed in a three capsule fixture showed phase transformations occurring in Fe₄N, Fe₁₆N₂, and Nd₂Fe₁₄B, while Sm₂Fe₁₇N₃ was observed to be relatively stable. Shock compaction of FCC Fe₄N resulted in a partial transformation to HCP Fe₃N, consistent with previous reports of the transition occurring at a static pressure of ~3 GPa. Shock compaction of Fe₁₆N₂ produced decomposition products alpha-Fe, Fe₄N, and FeN due to a combination of thermal effects associated with dynamic void collapse and plastic deformation. Decomposition of Nd-Fe-B, producing alpha-Fe and amorphous Nd-Fe-B, was observed in several shock consolidated samples and is attributed to deformation associated with shock compaction, similar to decomposition reported in ball milled Nd-Fe-B. No decomposition was observed in shock compacted samples of Sm-Fe-N, which is consistent with literature reports showing decomposition occurring only in samples compacted at a pressure above ~15 GPa. Nd-Fe-B and Sm-Fe-N were shown to accommodate deformation primarily by grain size reduction, especially in large grained materials. Hard/Soft composite magnetic materials were formed by mixing single crystal particles of Nd-Fe-B with iron nanoparticles, and the alignment-by-magnetic-field technique was able to introduce significant texture into green compacts of this mixture. While problems with decomposition of the Nd₂Fe₁₄B phase prevented fabricating bulk magnets from the aligned green compacts, retention of the nanoscale morphology of the alpha-Fe particles and the high alignment of the green compacts shows promise for future development of textured nanocomposite magnets through shock compaction.
17

Deformation Mechanisms and Microstructure Evolution in HfNbTaTiZr High Entropy Alloy during Thermo-mechanical Processing at Elevated Temperatures / HfNbTaTiZrハイエントロピー合金の高温加工熱処理における変形機構と組織形成

RAJESHWAR, REDDY ELETI 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21767号 / 工博第4584号 / 新制||工||1714(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 乾 晴行, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
18

Pressure Dependence Of The Strength Of Magnesite Deforming By Low Temperature Plasticity, Diffusion Creep, Or Dislocation Creep

Millard, Joseph William 26 July 2018 (has links)
No description available.
19

Composites eutectiques et hypo-eutectiques Mg/gamma-Mg17Al12 : microstructures et comportement mécanique à l’ambiante et à chaud / Mg-gamma-Mg17Al12 eutectic and hypoeutectic composites : microstructures and mechanical behavior at ambient and high temperature

Benrhaiem, Souad 29 April 2014 (has links)
A la composition Mg-31 at.% Al, le système Magnésium-Aluminium présente un eutectique dont la microstructure est formée d'une matrice de phase métallique complexe gamma-Mg17Al12 et de fibres de Magnésium. Au cours de la thèse, une série d'alliages Mg-Al eutectiques et hypo-eutectiques a été élaborée par solidification afin d'obtenir des composites in situ à différentes fractions volumiques de phase complexe. Ces alliages constituent un type nouveau de composites à phases métalliques complexes. L'étude du comportement mécanique à l'ambiante révèle la possibilité d'une plasticité de ces composites même pour des fractions volumiques élevées de phase gamma-Mg17Al12, phase très dure mais fragile à l'état massif. A chaud (250°C-350°C), pour tous les composites, le comportement en compression est caractérisé par un pic de contrainte suivi d'un adoucissement prononcé. L'étude microstructurale suggère que, à l'ambiante, la déformation plastique est possible grâce à la microstructure à fine échelle de la phase métallique complexe gamma-Mg17Al12. A chaud, le comportement peut s'interpréter par des mécanismes de recristallisation dynamique et de glissements aux joints de grains. / For a 31 at.% Al content, the Mg-Al system shows a eutectic mixture formed by Mg fibers embedded in a matrix of a complex metallic phase, the gamma-Mg17Al12 phase. During the thesis, eutectic and hypoeutectic Mg-Al alloys have been prepared by solidification to obtain in situ composites with various volume fractions of complex phases. These alloys appear as a new kind of composites containing complex metallic phases. The mechanical behaviour at room temperature shows that plasticity is possible even for high volume fraction of the gamma-Mg17Al12 phase, a phase which is very hard but brittle at room temperature. At high temperature (250°C-350°C), for all composites, compression tests exhibit a stress peak followed by a pronounced softening. Microstructural studies suggest that the room temperature plasticity is related to the fine scale microstructure of the complex metallic phase gamma-Mg17Al12. At high temperature, the mechanical behavior results preferentially from dynamic recrystallisation and grain boundary sliding.
20

Développement de nouveaux alliages biocompatibles instables mécaniquement à bas module d'Young / Development of biocompatible titanium-based alloys mechanically unstable with low Young's modulus.

Elmay, Wafa 22 March 2013 (has links)
Les alliages de titane β-métastables biocompatibles suscitent un intérêt croissant pour les applications médicales grâce à leur comportement superélastique et/ou effet mémoire de forme, leur excellente résistance à la corrosion et leur bonne aptitude à la déformation à froid. Dans le cadre de cette thèse, un alliage superélastique Ti-26Nb et un alliage à mémoire de forme Ti-24Nb ont été élaborés en creuset froid en semi-lévitation magnétique et ont fait l'objet d'une caractérisation approfondie sur le plan microstructural et mécanique. Les mécanismes de déformation activés lors d'une sollicitation mécanique ont été identifiés pour les deux alliages au moyen d'essais de traction couplés à des mesures in-situ en diffraction des rayons X. Une procédure d'optimisation basée sur des traitements thermo-mécaniques nano-structurants a été développée pour augmenter simultanément la résistance mécanique et la superélasticité tout en conservant un bas module élastique. Un ensemble de propriétés qui conditionne la réussite de la pose d'implant en améliorant la qualité de transfert des contraintes à l'interface os/implant. Les évolutions microstructurales à l'origine de l'optimisation de ces propriétés ont été étudiées par diffraction des rayons X, microscopie électronique à transmission et essais mécaniques. Ce travail se conclut par une introduction à la modélisation micromécanique du comportement du Ti-26Nb. Les caractéristiques cristallographiques de la transformation martensitique ont été déterminées en se basant sur la théorie de Ball et James. L'influence de l'orientation cristallographique sur le comportement mécanique des monocristaux a été étudiée. / Biocompatible metastable β-titanium alloys have attracted much attention for biomedical applications in recent years thanks to their superelastic and/or shape memory behavior, their superior corrosion resistance and their excellent cold workability. In this present study, a superelastic Ti-26Nb alloy and a shape memory Ti-24Nb alloy were produced by the cold crucible levitation melting method. A detailed microstructural and mechanical characterization were performed. The deformation mechanisms occurring during uniaxial deformation were identified for these two alloys by coupling in situ tensile testing with X-ray diffraction measurement. An optimization route based on nanostructuring process was developed in order to enhance both strength and superelasticity while keeping a low elastic modulus. These properties are required to improve the load transfer along the bone/implant interface which is essential to the success of implants. The microstructural evolution during the thermomechanical process resulting in the optimization of properties was investigated through tensile tests, X-ray diffraction and transmission electron microcopy. The last part of this study deals with an introduction of micromechanical modeling of the Ti-26Nb behavior. The crystallographic features of the martensitic transformation were determined by applying the Ball and James theory. The influence of the crystallographic orientation on the mechanical response was investigated for tension and compression.

Page generated in 0.1608 seconds