• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desarrollo de un modelo fenomenológico para la vía lisosomal de degradación de proteínas

Soto Reyes, Cristhoper Patricio January 2018 (has links)
Ingeniero Civil en Biotecnología / El cultivo de células animales ha crecido continuamente en los últimos años, debido al avance en las técnicas de cultivo y al entendimiento de los procesos celulares. La venta de productos obtenidos a partir de estas técnicas deja importantes utilidades y la obtención de nuevos medicamentos deja grandes ganancias sociales. Dentro de los factores que ayudan a mejorar la productividad, se ha estudiado la posibilidad de intervenir los procesos de apoptosis y degradación de proteínas. En este contexto es donde cobra relevancia la obtención de modelos que estudien estas vías. En este documento se busca estudiar y modelar la degradación de proteínas via lisosomal. Para ello se realiza una investigación bibliográfica, se eligen los componentes del modelo, se plantean reacciones para poder deducir ecuaciones y simularlas. Se obtienen gráficos que describen diferentes procesos del sistema. Uno de los proncipales resultados fue la ratificación de que la degradación via lisosoma es más lenta que el replegamiento de proteínas. Las proteínas son degradadas entre 16 y 30 minutos luego de comenzada la simulación. Se logra describir tanto la generación de autolisosoma como la degradación de este. Se propone y realiza una simplificación de la formación del complejo Atg12Atg5Atg16, la que no altera visiblemente la degradación de autolisosoma. Por otra parte, se propone en un futuro modificar las condiciones gatillantes del estrés celular, con el fin de robustecer el modelo Finalmente se destaca la utilidad que puede tener un modelo de degradación de proteínas agregadas vía lisosomal. La aplicación de este podría generar utilidades y posicionar a la industria en un nivel más competitivo.
2

Regulación de la degradación intracelular de proteínas por glucosa

Moruno Manchón, José Félix 07 January 2014 (has links)
La supervivencia celular frente a los cambios ambientales requiere el mantenimiento de un equilibrio dinámico entre la síntesis y la degradación de proteínas. La degradación de proteínas, además de regular diferentes procesos celulares, tiene como función principal la eliminación de productos que no son útiles para la célula en determinadas situaciones o cuya acumulación puede ser tóxica. Los productos de esta degradación, es decir los aminoácidos, son reutilizados para la síntesis de nuevas moléculas o son metabolizados para la obtención de energía. La alteración de esta proteólisis intracelular puede llevar a la acumulación en el citoplasma de orgánulos defectuosos o de moléculas que se pueden agrupar en agregados insolubles y que pueden así desencadenar diferentes patologías. Aunque se ha avanzado bastante durante los últimos años en los conocimientos sobre la degradación intracelular de proteínas y de sus principales mecanismos, existen bastantes detalles moleculares todavía desconocidos. Por este motivo es necesario aportar nueva información sobre estos procesos que además podría ser relevante para identificar nuevas dianas terapéuticas y desarrollar tratamientos más eficaces para las enfermedades derivadas de alteraciones en los mismos. La degradación de proteínas ocurre por diferentes mecanismos que pueden clasificarse generalmente en dependientes o no de unos orgánulos citoplásmicos, los lisosomas. La macroautofagia (a la que se denomina generalmente con el término más simple de autofagia) y el sistema ubicuitina-proteasomas son, respectivamente, los más importantes de esos dos grupos. Básicamente, el sistema ubicuitina-proteasomas consiste en la poliubicuitinación de proteínas que son después degradadas por los proteasomas. La autofagia en cambio se inicia con el secuestro de porciones del citoplasma en estructuras de doble membrana que se cierran formando los autofagosomas. Posteriormente, los autofagosomas se fusionan con endosomas y con lisosomas dando lugar a los autolisosomas, en los que por la acción de las proteasas o catepsinas lisosomales se degrada el material encerrado. La autofagia está regulada por una amplia variedad de vías de señalización que responden a multitud de factores ambientales. Entre estos últimos, la situación de ayuno de nutrientes es la inductora más potente de la autofagia. Durante la privación de nutrientes como los aminoácidos, la célula sufre un estrés energético que debe tratar de reducir produciendo ATP a partir de nuevas fuentes. Para ello activa la autofagia para degradar los componentes de la célula, como las proteínas, hasta producir sus unidades básicas que después son metabolizadas. Por el contrario, se ha demostrado que cuando se proporcionan aminoácidos a la célula la autofagia es inhibida. Aunque el efecto sobre la autofagia de los aminoácidos ha sido estudiado ampliamente en muchos laboratorios, no estaba tan claro ese efecto en el caso de otro nutriente, la glucosa, ya que cuando planteamos ese estudio los datos eran contradictorios. En este trabajo hemos podido establecer claramente que la glucosa tiene un papel inductor sobre la autofagia empleando técnicas muy variadas que incluyen: la cuantificación por ¿Western-blot¿ de los niveles del marcador de autofagia LC3-II en presencia o en ausencia de inhibidores lisosomales, la cuantificación de la proteína degradada, total y por la vía autofágica, mediante experimentos de pulso y caza, la cuantificación morfométrica de estructuras autofágicas (equivalentes a autofagosomas y autolisosomas) por microscopia electrónica y la cuantificación de la masa lisosomal por fluorescencia. Además, hemos comprobado que la glucosa también induce la ubicuitinación de proteínas y la degradación de estas por los proteasomas. Con estos y otros datos obtenidos durante el desarrollo de esta tesis doctoral, hemos podido concluir que la glucosa induce la autofagia en todos los tipos celulares estudiados y en todas las condiciones ensayadas. Este efecto disminuye o se enmascara cuando están presentes a la vez otros factores que son inhibidores de la autofagia, como los aminoácidos o el suero bovino fetal, lo que podría explicar algunos de los datos contradictorios en la literatura. La glucosa aporta la energía necesaria para el correcto funcionamiento de la autofagia a partir de unos niveles mínimos de ATP. Un descenso en la disponibilidad energética a través de la inhibición de la glucólisis reprime la autofagia inducida por la glucosa. Sin embargo, la estimulación de la autofagia por glucosa no parece depender únicamente de la disponibilidad de ATP, sino que hemos identificado una vía de señalización en la que no interviene AMPK a pesar de responder al descenso de los niveles de ATP y al aumento de los niveles de calcio durante la incubación en un medio carente de glucosa. Esta vía tampoco implica a mTORC1 y en ella sí interviene en cambio la MAPK p38¿, como hemos comprobado con diferentes inhibidores de esta quinasa, con el uso de siRNAs o empleando MEFs p38-/-. Consideramos que estos resultados contribuyen a clarificar más la regulación de la autofagia por nutrientes y, más concretamente, por uno tan relevante como es la glucosa. / Moruno Manchón, JF. (2013). Regulación de la degradación intracelular de proteínas por glucosa [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34775 / TESIS
3

Regulation of the stability of the protein kinase DYRK1A: establishing connections with the Wnt signaling pathway

Arató, Krisztina 20 December 2010 (has links)
DYRK1A is the most studied member of the DYRK family of protein kinases, because is one of the human chromosoma 21 proteins for which changes in gene dosage result in neuropathological alterations. DYRKs are activated by autophosphorylation on a tyrosine residue in the activation loop, a one-off event that takes place during translation. Accordingly, DYRK1A would be constitutively active once is synthesized. However, DYRK1A is extremely sensitive to gene dosage, and thus it is predictable that not only its activity but also its actual protein amounts have to be tightly regulated by mechanisms not yet characterized. In the present study, the protein kinase NLK has been identified as a novel regulator of DYRK1A protein stability. DYRK1A interacts with NLK in physiological conditions. The interaction results in the phosphorylation of DYRK1A at multiple sites, which have been identified by mass spectrometry analysis. These phosphorylation events promote DYRK1A proteasome-dependent degradation. Moreover, DYRK1A degradation is induced by stimulating cells with Wnt1 or Wnt3a, or overexpressing elements of the Wnt signaling cascade such as the Frizzled-1 receptor or NLK activators such as HIPK2. In addition, DYRK1A interacts with and phosphorylates -catenin and TCF-4 and enhances -catenin-dependent transcriptional activity, at least by phosphorylation of -catenin. Thus, these results suggest that DYRK1A acts as a positive factor in the Wnt--catenin signaling pathway and NLK acts as a negative regulator by targeting both DYRK1A and TCF/LEF transcription factors for proteasome-mediated degradation. / DYRK1A es el miembro más estudiado de la familia de proteína quinasas DYRK, porque es una de las proteínas de la cromosoma humano 21 para la que cambios en la dosis génica dan lugar a alteraciones neuropatológicas. Las quinasas DYRK se activan por autofosforilación en un residuo tirosina localizado en el lazo de activación, un evento único que ocurre durante la traducción. Como consecuencia, DYRK1A sería constitutivamente activa una vez se ha sintetizado. Sin embargo, DYRK1A es extremadamente sensible a la dosis génica, y por tanto es predecible que no sólo su actividad, pero también los niveles de proteína han de estar estrictamente controlados por mecanismos reguladores que todavía no han sido caracterizados. En este trabajo, la proteína quinasa NLK ha sido identificada como un nuevo regulador de la estabilidad de DYRK1A. DYRK1A interacciona con NLK en condiciones fisiológicas, y la interacción tiene como resultado la fosforilación de DYRK1A en residuos serina/treonina, varios de los cuales han sido identificados por espectrometría de masas. La interacción con NLK y la subsecuente fosforilación promueven la degradación de DYRK1A vía el proteasoma. Además, la degradación de DYRK1A es inducida por estimulación de la células con Wnt1 o Wnt3a, o por sobreexpresión de miembros de la cascada de señalización de Wnt, como el receptor Frizzled-1 o de un activador de NLK como HIPK2. Finalmente, se ha demostrado que DYRK1A se une y fosforila -catenina y TCF-4. La fosforilación de, al menos, -catenina es responsable del incremento de la actividad transcripcional dependiente de esta proteína en presencia de DYRK1A. Todos estos resultados sugieren que DYRK1A actúa como un factor positivo en la vía de señalización Wnt--catenina y NLK actúa como un regulador negativo al inducir la degradación vía proteasoma no sólo de los factores de transcripción TCF/LEF sino también del modulador positivo DYRK1A.

Page generated in 0.1001 seconds