Spelling suggestions: "subject:"desorption."" "subject:"esorption.""
51 |
Laser-induced desorption and damage of water- and heavy water-dosed optical thin films.Franck, Jerome Bruce. January 1989 (has links)
Previous work has shown that laser-induced desorption (LID) can prove useful for the determination of surface contamination. However, because of the nature of small-spot sampling utilized in the previous work, it proved rather difficult to gather statistically significant data. A solution to this problem that still allowed sampling the surface with small focused laser spots was to automate the sample manipulation, laser control, and data acquisition of the system. With the automation of the LID facility in place, a detailed study of the LID of water/heavy water (H₂O/D₂O) was undertaken. As in the earlier work, samples were irradiated with a hydrogen fluoride/deuterium fluoride (HF/DF) laser beam focused inside an ultrahigh vacuum (UHV) chamber. The molecules desorbed from the sample surface were partially contained in a glass envelope that also contained a quadrupole mass analyzer. Samples consisted of bulk-etched CaF₂ and optical thin-film coatings of CaF₂--undosed or H₂O/D₂O dosed--on a variety of substrates. Some analysis was performed on cleaved, single-crystal alkali halides. The focused laser spot size was 155 μm (l/e² diameter) for the HF laser and 138 μm (l/e² diameter) for the DF laser. Between 400 and 800 sites per sample were tested for each desorption onset analysis. A study was also performed to test the possibility of correlation between (1) laser-induced damage and defects and (2) laser-induced desorption and adsorption sites for some of the samples listed above. Attempts to deuterate and hydrate CaF₂ thin films met with limited success as laser-induced desorption samples. Other analysis techniques showed that dosing during the coating process produced a more ordered coating; in fact, dosing with H₂O reduced the optical absorption in the "H₂O" band, modified the damage morphology, and, along with a low temperature bakeout, raised the laser-damage threshold.
|
52 |
Impact d'une polarisation électrochimique pour le piégeage réversible de la bentazone sur carbones nanoporeux / Impact of an electrochemical polarization for the reversible trapping of bentazone on nanoporous carbonsDelpeux-Ouldriane, Sandrine 29 November 2010 (has links)
De part leur surface poreuse développée, les carbones activés montrent une grande efficacité pour l’adsorption de composés organiques en solution et la dépollution de l’eau. Cependant, l’adsorption est souvent irréversible et se pose le problème de la régénération de l’adsorbant. Dans ce travail, nous avons examiné les potentialités de piégeage réversible d’un herbicide, la bentazone, sur des tissus de carbone activé en utilisant un procédé électrochimique. Nous avons montré que la polarisation cathodique permet véritablement de régénérer la porosité du tissu de carbone avec une cinétique de désorption rapide et supérieure à la cinétique d’adsorption. Le processus d’adsorption fait intervenir essentiellement des interactions dispersives, en partie atténuées par les répulsions électrostatiques avec les groupes de surface dissociés. La bentazone s’adsorbe à plat par interactions et envahit les ultramicropores. La désorption sous polarisation négative implique des forces électrostatiques répulsives entre la surface de carbone polarisée et la bentazone chargée négativement, significativement renforcées par la présence du champ électrostatique, d’autant plus à des valeurs de pH élevées. L’électrodécomposition de l’eau joue un rôle crucial en provoquant une augmentation locale de pH dans la porosité, favorisant la dissociation de la bentazone, et donc en accentuant les répulsions électrostatiques. Les taux de désorption sont élevés et atteignent jusqu’à 95% au second cycle de désorption, sans altérer les propriétés physico-chimiques initiales de l’adsorbant carboné. Lors du premier cycle de désorption, on constate qu’une partie de la bentazone reste piégée irréversiblement (30 à 50%), soit parce qu’elle est bloquée dans l’ultramicroporosité ou bien parce qu’elle est adsorbée au niveau de feuillets qui ne sont pas connectés électriquement aureste du réseau carboné, et restent donc inefficaces lors de la polarisation de l’électrode. / With their highly developed porous surface, activated carbons show a great efficiency for adsorption of organic compounds in solutions and for water decontamination. Indeed, adsorption has often an irreversible character and the problem concerning the regeneration of the adsorbent appears. In this study, we have examinated the reversible trapping of a herbicide, bentazone, on activated carbon cloths using an electrochemical technique. We have shown that cathodic polarization allows the regeneration of the porosity of activated carbon cloth with a quick kinetic of desorption, higher than the kinetic of chemical adsorption. The adsorption process implies dispersive interactions, partially attenuated by electrostatic repulsions with the dissociated acidic surface groups. The bentazone is adsorbed in a flat position with its aromatic ring parallelel to the carbon surface, through interactions, and is able to enter in the ultramicropores. The desorption under negative polarization involves electrostatic repulsions between the carbon surface which is negatively polarized and the dissociated bentazone molecule. These repulsions are increased significantly with the existence of the electrostatic field, and the effect is more pronounced at high pH values. The electrochemical decomposition of water plays a crucial role by increasing the local pH in the pores, and favoring the dissociation of bentazone, and therefore the electrostatic repulsions. The desorption level reaches high values, until 95% during the second cycle of desorption, without altering the physico-chemical properties of the activated carbon cloth. During the first step of desorption, we notice that a part of the bentazone is trapped irreversibly (30 à 50%). This is caused by either the blockage of the adsorbate in the ultramicropores or the absorption of bentazone on graphene sheets which are not connected to the carbon network and are therefore insensible to polarization.
|
53 |
Analysis of oligonucleotides by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF-MS). / CUHK electronic theses & dissertations collectionJanuary 2001 (has links)
Li Yiu-Ching. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 123-132). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
54 |
Development of new methods to perform matrix-assisted laser desorption/ionization (MALDI) experiments in fourier-transform ion-cyclotron-resonance mass spectrometer (FTICR-MS). / CUHK electronic theses & dissertations collectionJanuary 2000 (has links)
Sze Tung Po Eric. / "Mar 2000." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
55 |
Simulation studies of the ion cooling processes of MALDI derived ions in fourier-transform mass spectrometry.January 2006 (has links)
Ko Ka Lung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Abstracts in English and Chinese. / Title page --- p.i / Abstract (English) --- p.ii / Abstract (Chinese) --- p.iii / Acknowledgement --- p.iv / Declaration --- p.v / Table of Content --- p.vi / List of Figure --- p.viii / Chapter 1. --- INTRODUCTION --- p.1 / Chapter 1.1 --- Matrix-assisted Laser Desorption / Ionization (MALDI) --- p.2 / Chapter 1.1.1 --- Evolution of Matrix-assisted laser desorption / ionization (MALDI) --- p.2 / Chapter 1.1.1.1 --- Lasers --- p.3 / Chapter 1.1.1.2 --- Matrices --- p.3 / Chapter 1.1.1.3 --- Sample preparation --- p.4 / Chapter 1.1.1.4 --- Desorption --- p.6 / Chapter 1.1.1.5 --- Ionization --- p.7 / Chapter 1.2 --- Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with MALDI (FTICR-MS) --- p.9 / Chapter 1.2.1 --- History of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry --- p.9 / Chapter 1.2.2 --- Basics of FTICR-MS --- p.11 / Chapter 1.2.3 --- FTICR couple with external ionization source --- p.15 / Chapter 1.2.4 --- Coupling of MALDI to FTICR --- p.16 / Chapter 1.3 --- Problems encountered on the coupling of MALDI to FTICR-MS --- p.17 / Chapter 1.4 --- Outline of present work --- p.19 / Chapter 2 --- SIMULATION METHOD --- p.20 / Chapter 2.1 --- Overview of the ion optics simulation --- p.21 / Chapter 2.2 --- History of SIMION Program --- p.22 / Chapter 2.3 --- Basics and theory of SIMION version 6.0 --- p.24 / Chapter 2.4 --- Simulation method --- p.26 / Chapter 2.4.1 --- Creating potential array --- p.27 / Chapter 2.4.2 --- User program --- p.29 / Chapter 2.4.3 --- Ion definition parameter --- p.31 / Chapter 2.4.4 --- Trajectories quality panel --- p.33 / Chapter 2.4.5 --- Data recording --- p.36 / Chapter 3 --- OPTIMIZATION OF RF-ONLY HEXAPOLE UNDER PULSE GAS CONDITION --- p.37 / Chapter 3.1 --- Introduction --- p.38 / Chapter 3.2 --- Simulation conditions --- p.39 / Chapter 3.3 --- Results and discussion --- p.40 / Chapter 3.3.1 --- rf-frequency (w) --- p.41 / Chapter 3.3.2 --- rf voltage (Vo-p) --- p.44 / Chapter 3.3.3 --- Pulse gas pressure(po) --- p.47 / Chapter 3.3.4 --- Trapping potential (VT) --- p.49 / Chapter 3.3.5 --- Effect of space charge --- p.53 / Chapter 3.4 --- Conclusions --- p.60 / Chapter 4 --- OPTIMIZATION OF DIFFERENT HEXAPOLE-BASED INTERFACES FOR PRE-TRAPPING COOLING --- p.61 / Chapter 4.1 --- Introduction --- p.62 / Chapter 4.2 --- Simulation conditions --- p.63 / Chapter 4.3 --- Results and discussion --- p.66 / Chapter 4.3.1 --- Static medium pressure interface --- p.66 / Chapter 4.3.1.1 --- Effect of pressure --- p.66 / Chapter 4.3.1.2 --- Effect of space charge --- p.70 / Chapter 4.3.2 --- Differential pressure model (Skimmer-based) --- p.73 / Chapter 4.3.2.1 --- Effect of pressure --- p.73 / Chapter 4.3.2.2 --- Effect of space charge --- p.76 / Chapter 4.3.3 --- A comparison of the optimal operating conditions for the three proposed interfaces --- p.81 / Chapter 4.3.4 --- Comparison of the theoretical results amd the experimental results --- p.83 / Chapter 4.4 --- Conclusion --- p.84 / Chapter 5 --- CONCLUSIONS --- p.85 / Chapter 5.1 --- Conclusions --- p.86 / REFERENCES --- p.R1 / APPENDIX --- p.A1
|
56 |
Effects of ammonium salts as co-matrices for the analysis of oligonucleotides by matrix-assisted laser desorption/ionization mass spectrometry.January 1996 (has links)
by Cheng Sau Wan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves [72]-[76]). / TABLE OF CONTENTS --- p.i / ABSTRACT --- p.iv / LIST OF FIGURES --- p.vi / LIST OF TABLES --- p.x / Chapter CHAPTER ONE --- RESEARCH BACKGROUND --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Matrix-assisted laser desorption / ionization mass spectrometry (MALDI) --- p.2 / Chapter 1.2.1 --- Laser desorption methods --- p.2 / Chapter 1.2.2 --- The matrix --- p.3 / Chapter 1.2.2.1 --- Role of the matrix --- p.3 / Chapter 1.2.2.2 --- Features of the matrix --- p.4 / Chapter 1.2.3 --- Mechanisms of ion formation --- p.6 / Chapter 1.2.3.1 --- Desorption process(es) --- p.6 / Chapter 1.2.3.2 --- Ionization process(es) --- p.7 / Chapter 1.3 --- Sequencing of DNA --- p.8 / Chapter 1.3.1 --- DNA sequencing procedure --- p.10 / Chapter 1.3.1.1 --- Generation of the nested set of DNA molecules --- p.11 / Chapter 1.3.1.2 --- Sequence analysis --- p.11 / Chapter 1.3.2 --- MALDI-TOF-MS as a DNA sequencing tool --- p.12 / Chapter 1.3.3 --- MALDI analysis of oligonucleotides --- p.14 / Chapter 1.4 --- Outline of the present work --- p.16 / Chapter CHAPTER TWO --- INSTRUMENTATION AND EXPERIMENTAL --- p.18 / Chapter 2.1 --- Time-of-flight mass spectrometry (TOF-MS) --- p.18 / Chapter 2.1.1 --- Linear time-of-flight mass spectrometry --- p.18 / Chapter 2.1.2 --- Reflectron time-of-flight mass spectrometry --- p.21 / Chapter 2.1.3 --- Ion detection --- p.22 / Chapter 2.1.4 --- Vacuum system --- p.22 / Chapter 2.2 --- Instrumentation --- p.24 / Chapter 2.2.1 --- The laser system --- p.24 / Chapter 2.2.2 --- Ion source and vacuum system --- p.24 / Chapter 2.2.3 --- Flight tube and reflector --- p.27 / Chapter 2.2.4 --- The detector --- p.28 / Chapter 2.2.5 --- Data acquisition and computer control --- p.28 / Chapter 2.3 --- Experimental --- p.29 / Chapter 2.3.1 --- Sample preparation --- p.29 / Chapter 2.3.2 --- Mass spectrometric analysis --- p.30 / Chapter CHAPTER THREE --- USE OF AMMONIUM SALTS AS CO-MATRICES --- p.32 / Chapter 3.1 --- Introduction --- p.32 / Chapter 3.2 --- Experimental --- p.35 / Chapter 3.3 --- Results and Discussion --- p.36 / Chapter 3.3.1 --- Effects of counter-anions --- p.36 / Chapter 3.3.2 --- Effects of matrix materials --- p.40 / Chapter 3.4 --- Conclusions --- p.43 / Chapter CHAPTER FOUR --- USE OF POTASSIUM SALTS AS CO-MATRICES --- p.44 / Chapter 4.1 --- Introduction --- p.44 / Chapter 4.2 --- Experimental --- p.44 / Chapter 4.3 --- Results and Discussion --- p.44 / Chapter 4.3.1 --- Adduct formation --- p.49 / Chapter 4.3.2 --- Signal enhancement --- p.50 / Chapter 4.4 --- Conclusions --- p.52 / Chapter CHAPTER FIVE --- ANALYSIS OF HIGH MASS OLIGONUCLEOTIDES --- p.53 / Chapter 5.1 --- Introduction --- p.53 / Chapter 5.2 --- Experimental --- p.53 / Chapter 5.3 --- Results and Discussion --- p.54 / Chapter 5.4 --- Conclusions --- p.67 / Chapter CHAPTER SIX --- CONCLUSIONS AND FURTHER WORK --- p.68 / Chapter 6.1 --- Conclusions --- p.68 / Chapter 6.2 --- Further work --- p.70 / ACKNOWLEDGMENT --- p.A1 / REFERENCES --- p.R1 - R5
|
57 |
Comportamento ambiental e bioatividade sobre plantas daninhas de herbicidas residuais aplicados sobre a palha de cana-de-açúcar em diferentes condições hídricas do solo / Behaviour and environmental bioactivityon weeds of herbicides residualapplied on sugarcane residues in different soil with water conditionsPaulo Vinícius da Silva 30 May 2018 (has links)
Herbicidas aplicados nos sistemas de cana-de-açúcar, diretamente no solo ou sobre palha, ficam disponíveis a fenômenos de transporte, retenção e transformação. Nesse contexto, o objetivo desse trabalho foiavaliar a lixiviação e sorção de herbicidas residuais em solos com diferentes características físicoquímicas e em palha de cana-de-açúcar. Para tal, foram realizados quatro experimentos. O primeiro relativo à lixiviação, através da metodologia de bioensaios, seguindo o esquema fatorial 8 x 2 x 2, em delineamento inteiramente casualizado, com quatro repetições, sendo oito profundidades do perfil do solo, dois períodos de seca (0 e 30 dias após a aplicação dos tratamentos - DAT) e duas quantidades de palha, esse fatorial foi adotado de forma individual para os herbicidas amicarbazone (1225 g i.a. ha-1 ); imazapic (147 g i.a ha- 1 ), sulfentrazone (800 g i.a ha-1 ) e tebuthiuron (900 g i.a ha-1 ). Os herbicidas foram aplicados no topo de colunas de solo montadas em tubos de PVC com 0 e 10 t ha-1 de palha, esses tratamentos foram submetidos aos três diferentes períodos de seca (0 e 30 DATs), ao final dessas épocas foi realizada uma simulação de chuva de 30 mm e realizada a semeadura de Cucumis sativus (planta bioindicadora), as avaliações de fitoxicidade foram efetuadas aos 7, 10 e 15 dias após a emergencia - DAE, aos 15 DAE foramrealizadas as avaliações de massa seca e altura da parte aérea das plantas. O segundo experimento consistiu na determinação de coeficientes de adsorção e dessorção (Kd e Koc) em 15 solos com diferentes características físico-químicas, para os herbicidas indaziflam, imazapic e amicarbazone. Foi utilizada a metodologia de herbicidas rádio marcados com C14, aplicou-se cinco diferentes concentrações dos herbicidas frios (0,125, 0,25, 0,50, 0,75 e 1,00 ppm), associados aos diferentes solos e herbicidas rádio marcados nas concentrações de 0,24 KBq de indaziflam, 0,26 KBq de imazapic ou 0,20 KBq de amicarbazone, de forma individual em cada unidade experimental. A concentração dos herbicidas rádio marcados presentes no sobrenadante foi determinada por espectroscopia de cintilação líquida (LSS) e por diferença entre a quantidade inicialmente aplicada e a presente na solução do solo, determinando-se adsorção. Através do mesmo processo também foi avaliada a dessorção dos herbicidas em quatro dias de análise. O terceiro experimento avaliou a adsorção de indaziflam, imazapic e amicarbazone em palha de cana-de-açúcar. Um estudo típico e equilíbrio em lotes foi conduzido para determinar adsorção e dessorção em diferentes concentrações dos herbicidas. A palha de cana-de-açúcar (0,27 g) foi combinada com três concentrações dos herbicidas (0,125, 0,5 e 1 ppm) mais os herbicidas radiomarcados nas seguintes quantidades: 0,24 KBq de indaziflam, 0,26 KBq imazapic e 0,20 KBq de amicarbazone. Após o estabelecimento do equilíbrio que foi de 24 horas para os três herbicidas, foi determinada a quantidade de herbicida adsorvida na palha de cana-de-açucar. Após a analise da adsorção, a solução presente nas unidades experimentais foi descartada e reposta por uma solução de cloreto de cálcio, e a dessorção foi então analisada após 24 horas, durante o período de um dia para amicarbazone, cinco dias para indaziflam, e não foi realizada analise de dessorção para o herbicida imazapic.Um quarto experimento, abordou a intercepção de herbicidas pela palha de cana-de-açúcar mediante a simulação de chuvas em diferentes precipitações (3, 6, 12 e 24 mm). Os herbicidas foram aplicados em duas quantidades de palha de cana-de-açúcar, as quais foram espalhadas de forma uniforme sobre uma tela de aço inoxidável (5 t ha-1 e 10 t ha-1), em seguida, essa tela foi colocada sobre um recipiente de vidro. As simulações de chuva ocorreram aos 0 horas, 24 horas e sete dias após a aplicação dos tratamentos. Para o herbicida amicarbazone aos 0 DAT sem palha, a lixiviação do herbicida amicarbazone foi notada ate os 25 cm, sendo os efeitos fitotoxicos mais expressivos observados nos primeiros 15 cm, já nas aplicações de 30 DAT, nos tratamentos com palha e sem palha a lixiviação foi notada até os 10 cm, com maior fitotoxicidade nos primeiros 5 cm. Na lixiviação tebuthiuron e imazapic e sulfentrazone a permanência do produto sobre a palha de cana-de-açúcar durante 30 DAT tornou a lixiviação desses herbicidas menor. Para o herbicida sulfentrazone a presença de palha imapctou de maneira mais expressiva na lixiviação desse herbicida que o perido de seca. Para imazapic e amicarbazone, os valores de Kd foram baixos devido à sua alta solubilidade em água; no entanto, a adsorção de imazapic foi fortemente influenciada pelo pH do solo, e para amicarbazone a adsorção e dessorção foi influenciada pela matéria orgânica e pH dos solos. Para indaziflam, Kd foi correlacionado negativamente com o teor de argila, mas foi positivamente correlacionado com a matéria orgânica. A adsorção de indaziflam foi superior a 80% em todas as concentrações, enquanto que a adsorção imazapic foi inferior a 7% em todas as concentrações. A adsorção de amicarbazone foi inferior a 20% em todas as concentrações. A dessorção de indaziflam foi de 30%, 28,5% e 27,5% a 0,125, 0,5 e 1 ppm, respectivamente, após 5 dias. A dessorção máxima para amicarbazone foi observada a 1 ppm com 11%. Para o indaziflam, após um período de sete dias após a aplicação dos herbicidas sobre a palha de cana-de-açúcar simulou-se uma precipitação de 24 mm resultando na remoção de apenas 25% do herbicida interceptado. Para o herbicida imazapic a palha de cana-de-açúcar não apresentou uma barreira de expressiva para interceptação desse produto. Dessa forma, as características dos herbicidas, como a solubilidade em água e Kow, podem ser utilizadas para determinar a sua dinâmica em sistemas de produção de cana-de-açúcar, sendo que os atributos lixiviação, sorção em palha e em solo, podem direcionar a uma predileção do comportamento agronômico e destino ambiental de herbicidas residuais. Dessa forma, pode-se concluir que a presença de palha na superfície do solo atrelada aos diferentes períodos de seca pode afetar a mobilidade desses herbicidas no ambiente. Conclui-se que as cracteristicas físico-quimicas dos herbicidas associadas com os atributos do solo podem direcionar a dinâmica de adsorção e dessorção dos herbicidas. As características dos herbicidas, como a solubilidade em água e Kow, podem ser utilizadas para determinar a dificuldade de remoção dos herbicidas em palha de cana-de-açucar. / Herbicides applied to sugar cane systems, directly on the soils our by residues, are available to transport, retention and transformation phenomenon. In this context, the objective of this work was to evaluate the leaching and sorption of residual herbicides in soils with different physicochemical characteristics and in sugarcane residues. Four experiments were carried out. The first, was based on the bioassay methodology, followed the 8 x 2 x 2 factorial scheme, in a completely randomized design, with four replications, eight depths of the soil profile, two dry periods (0 and 30 days after application of the treatments (DAT) and two quantities of residues, this factorial was adopted individually for the herbicides amicarbazone (1225 g ia ha-1); imazapic (147 g i.a ha-1), sulfentrazone (800 g i.a ha-1) and tebuthiuron (900 g i.a ha-1). The herbicides were applied to the top of soil columns mounted in PVC tubes with 0 and 10 t ha-1 of straw, these treatments were submitted to the three different periods of dry (0 and 30 DATs), at the end of those times a 30 mm rainfall simulation and Cucumis sativus sowing (bioindicator plant), phytotoxicity (7, 10 and 15 DAE), dry mass and shoot height were evaluated. It was noted that the greatest phytotoxicity of the herbicide amicarbazone was in the 0-5 cm layer. And that periods of drought and straw decreased the mobility of this herbicide in the columns. In leaching tebuthiuron, imazapic and sulfentrazone the permanence of the product on the sugarcane straw during 30 DAT made the leaching of this herbicide minor. Thus, it can be concluded that the presence of straw on the soil surface coupled to the different periods of drought can affect the mobility of these herbicides in the environment. The second experiment consisted in the determination of coeficivity of adosorption and desorption (Kd and Koc) in 16 soils with different physicochemical characteristics, for the herbicides indaziflam, imazapic and amicarbazone. The C14- labeled radio-herbicide methodology was used to apply five different concentrations of the cold herbicides (0.125, 0.25, 0.50, 0.75 and 1.00 ppm), associated with the different soils and herbicides radio -marked at the concentrations of 0.24 KBq of indaziflam, 0.26 KBq of imazapic or 0.20 KBq of amicarbazone, individually in each experimental unit. The concentration of radiolabelled herbicides present in the supernatant was determined by liquid scintillation spectroscopy (LSS) and by difference between the amount initially applied and the present in the soil solution, determining adsorption. Through the same process the herbicide desorption was also evaluated in four days of analysis For imazapic and amicarbazone, Kd values were low due to their high solubility in water; however, the adsorption of imazapic was strongly influenced by the pH of the soil, and for amicarbazone the adsorption and desorption was influenced by the organic matter and pH of the soils. For indaziflam, Kd was negatively correlated with clay content but was positively correlated with organic matter. The third experiment evaluated the adsorption of indaziflam, imazapic and amicarbazone in sugarcane straw. A typical study and batch equilibrium was conducted to determine adsorption and desorption at different concentrations of the herbicides. Sugarcane residues (0.27 g) was combined with three concentrations of the herbicides (0.125, 0.5 and 1 ppm) plus 0.24 KBq of indaziflam, 0.26 KBq imazapic or 0.20 KBq of labeled amicarbazone radio. The adsorption of indaziflam, imazapic and amicarbazone was evaluated 24, 48 and 120 hours, respectively, after the contact of sugarcane residues. Indaziflam adsorption was greater than 80% at all concentrations, while imazapic adsorption was below 7% at all concentrations. The adsorption of amicarbazone was less than 20% at all concentrations. Indaziflam desorption was 30%, 28.5% and 27.5% at 0.125, 0.5 and 1 ppm, respectively, after 5 days. Maximum desorption for amicarbazone was observed at 1 ppm with 11%. The desorption for imazapic was not determined due to the low initial adsorption. A fourth experiment, addressed the interception of herbicides by sugarcane straw through simulated rainfall in various amounts of precipitation (3, 6, 12 and 24 mm). Two amounts of sugarcane straw were uniformly spread over a stainless steel screen (5 t ha-1 and 10 t ha-1), then the screen was placed on a Pyrex® pan. The rain simulations occurred at 0 hr, 24 hrs and seven days after the treatments were applied. For indaziflam, a period of seven days after application of the herbicides on the sugarcane straw was simulated a precipitation of 24 mm resulting in the removal of only 25% of the adsorbed herbicide. For the herbicide imazapic the sugarcane straw did not present an expressive barrier to interception of this product. Thus, the characteristics of the herbicides, such as water solubility and Kow, can be used to determine their dynamics in sugarcane production systems, and the leaching, straw sorption and soil attributes can a predilection for agronomic behavior and environmental fate of residual herbicides.
|
58 |
Comportamento ambiental e bioatividade sobre plantas daninhas de herbicidas residuais aplicados sobre a palha de cana-de-açúcar em diferentes condições hídricas do solo / Behaviour and environmental bioactivityon weeds of herbicides residualapplied on sugarcane residues in different soil with water conditionsSilva, Paulo Vinícius da 30 May 2018 (has links)
Herbicidas aplicados nos sistemas de cana-de-açúcar, diretamente no solo ou sobre palha, ficam disponíveis a fenômenos de transporte, retenção e transformação. Nesse contexto, o objetivo desse trabalho foiavaliar a lixiviação e sorção de herbicidas residuais em solos com diferentes características físicoquímicas e em palha de cana-de-açúcar. Para tal, foram realizados quatro experimentos. O primeiro relativo à lixiviação, através da metodologia de bioensaios, seguindo o esquema fatorial 8 x 2 x 2, em delineamento inteiramente casualizado, com quatro repetições, sendo oito profundidades do perfil do solo, dois períodos de seca (0 e 30 dias após a aplicação dos tratamentos - DAT) e duas quantidades de palha, esse fatorial foi adotado de forma individual para os herbicidas amicarbazone (1225 g i.a. ha-1 ); imazapic (147 g i.a ha- 1 ), sulfentrazone (800 g i.a ha-1 ) e tebuthiuron (900 g i.a ha-1 ). Os herbicidas foram aplicados no topo de colunas de solo montadas em tubos de PVC com 0 e 10 t ha-1 de palha, esses tratamentos foram submetidos aos três diferentes períodos de seca (0 e 30 DATs), ao final dessas épocas foi realizada uma simulação de chuva de 30 mm e realizada a semeadura de Cucumis sativus (planta bioindicadora), as avaliações de fitoxicidade foram efetuadas aos 7, 10 e 15 dias após a emergencia - DAE, aos 15 DAE foramrealizadas as avaliações de massa seca e altura da parte aérea das plantas. O segundo experimento consistiu na determinação de coeficientes de adsorção e dessorção (Kd e Koc) em 15 solos com diferentes características físico-químicas, para os herbicidas indaziflam, imazapic e amicarbazone. Foi utilizada a metodologia de herbicidas rádio marcados com C14, aplicou-se cinco diferentes concentrações dos herbicidas frios (0,125, 0,25, 0,50, 0,75 e 1,00 ppm), associados aos diferentes solos e herbicidas rádio marcados nas concentrações de 0,24 KBq de indaziflam, 0,26 KBq de imazapic ou 0,20 KBq de amicarbazone, de forma individual em cada unidade experimental. A concentração dos herbicidas rádio marcados presentes no sobrenadante foi determinada por espectroscopia de cintilação líquida (LSS) e por diferença entre a quantidade inicialmente aplicada e a presente na solução do solo, determinando-se adsorção. Através do mesmo processo também foi avaliada a dessorção dos herbicidas em quatro dias de análise. O terceiro experimento avaliou a adsorção de indaziflam, imazapic e amicarbazone em palha de cana-de-açúcar. Um estudo típico e equilíbrio em lotes foi conduzido para determinar adsorção e dessorção em diferentes concentrações dos herbicidas. A palha de cana-de-açúcar (0,27 g) foi combinada com três concentrações dos herbicidas (0,125, 0,5 e 1 ppm) mais os herbicidas radiomarcados nas seguintes quantidades: 0,24 KBq de indaziflam, 0,26 KBq imazapic e 0,20 KBq de amicarbazone. Após o estabelecimento do equilíbrio que foi de 24 horas para os três herbicidas, foi determinada a quantidade de herbicida adsorvida na palha de cana-de-açucar. Após a analise da adsorção, a solução presente nas unidades experimentais foi descartada e reposta por uma solução de cloreto de cálcio, e a dessorção foi então analisada após 24 horas, durante o período de um dia para amicarbazone, cinco dias para indaziflam, e não foi realizada analise de dessorção para o herbicida imazapic.Um quarto experimento, abordou a intercepção de herbicidas pela palha de cana-de-açúcar mediante a simulação de chuvas em diferentes precipitações (3, 6, 12 e 24 mm). Os herbicidas foram aplicados em duas quantidades de palha de cana-de-açúcar, as quais foram espalhadas de forma uniforme sobre uma tela de aço inoxidável (5 t ha-1 e 10 t ha-1), em seguida, essa tela foi colocada sobre um recipiente de vidro. As simulações de chuva ocorreram aos 0 horas, 24 horas e sete dias após a aplicação dos tratamentos. Para o herbicida amicarbazone aos 0 DAT sem palha, a lixiviação do herbicida amicarbazone foi notada ate os 25 cm, sendo os efeitos fitotoxicos mais expressivos observados nos primeiros 15 cm, já nas aplicações de 30 DAT, nos tratamentos com palha e sem palha a lixiviação foi notada até os 10 cm, com maior fitotoxicidade nos primeiros 5 cm. Na lixiviação tebuthiuron e imazapic e sulfentrazone a permanência do produto sobre a palha de cana-de-açúcar durante 30 DAT tornou a lixiviação desses herbicidas menor. Para o herbicida sulfentrazone a presença de palha imapctou de maneira mais expressiva na lixiviação desse herbicida que o perido de seca. Para imazapic e amicarbazone, os valores de Kd foram baixos devido à sua alta solubilidade em água; no entanto, a adsorção de imazapic foi fortemente influenciada pelo pH do solo, e para amicarbazone a adsorção e dessorção foi influenciada pela matéria orgânica e pH dos solos. Para indaziflam, Kd foi correlacionado negativamente com o teor de argila, mas foi positivamente correlacionado com a matéria orgânica. A adsorção de indaziflam foi superior a 80% em todas as concentrações, enquanto que a adsorção imazapic foi inferior a 7% em todas as concentrações. A adsorção de amicarbazone foi inferior a 20% em todas as concentrações. A dessorção de indaziflam foi de 30%, 28,5% e 27,5% a 0,125, 0,5 e 1 ppm, respectivamente, após 5 dias. A dessorção máxima para amicarbazone foi observada a 1 ppm com 11%. Para o indaziflam, após um período de sete dias após a aplicação dos herbicidas sobre a palha de cana-de-açúcar simulou-se uma precipitação de 24 mm resultando na remoção de apenas 25% do herbicida interceptado. Para o herbicida imazapic a palha de cana-de-açúcar não apresentou uma barreira de expressiva para interceptação desse produto. Dessa forma, as características dos herbicidas, como a solubilidade em água e Kow, podem ser utilizadas para determinar a sua dinâmica em sistemas de produção de cana-de-açúcar, sendo que os atributos lixiviação, sorção em palha e em solo, podem direcionar a uma predileção do comportamento agronômico e destino ambiental de herbicidas residuais. Dessa forma, pode-se concluir que a presença de palha na superfície do solo atrelada aos diferentes períodos de seca pode afetar a mobilidade desses herbicidas no ambiente. Conclui-se que as cracteristicas físico-quimicas dos herbicidas associadas com os atributos do solo podem direcionar a dinâmica de adsorção e dessorção dos herbicidas. As características dos herbicidas, como a solubilidade em água e Kow, podem ser utilizadas para determinar a dificuldade de remoção dos herbicidas em palha de cana-de-açucar. / Herbicides applied to sugar cane systems, directly on the soils our by residues, are available to transport, retention and transformation phenomenon. In this context, the objective of this work was to evaluate the leaching and sorption of residual herbicides in soils with different physicochemical characteristics and in sugarcane residues. Four experiments were carried out. The first, was based on the bioassay methodology, followed the 8 x 2 x 2 factorial scheme, in a completely randomized design, with four replications, eight depths of the soil profile, two dry periods (0 and 30 days after application of the treatments (DAT) and two quantities of residues, this factorial was adopted individually for the herbicides amicarbazone (1225 g ia ha-1); imazapic (147 g i.a ha-1), sulfentrazone (800 g i.a ha-1) and tebuthiuron (900 g i.a ha-1). The herbicides were applied to the top of soil columns mounted in PVC tubes with 0 and 10 t ha-1 of straw, these treatments were submitted to the three different periods of dry (0 and 30 DATs), at the end of those times a 30 mm rainfall simulation and Cucumis sativus sowing (bioindicator plant), phytotoxicity (7, 10 and 15 DAE), dry mass and shoot height were evaluated. It was noted that the greatest phytotoxicity of the herbicide amicarbazone was in the 0-5 cm layer. And that periods of drought and straw decreased the mobility of this herbicide in the columns. In leaching tebuthiuron, imazapic and sulfentrazone the permanence of the product on the sugarcane straw during 30 DAT made the leaching of this herbicide minor. Thus, it can be concluded that the presence of straw on the soil surface coupled to the different periods of drought can affect the mobility of these herbicides in the environment. The second experiment consisted in the determination of coeficivity of adosorption and desorption (Kd and Koc) in 16 soils with different physicochemical characteristics, for the herbicides indaziflam, imazapic and amicarbazone. The C14- labeled radio-herbicide methodology was used to apply five different concentrations of the cold herbicides (0.125, 0.25, 0.50, 0.75 and 1.00 ppm), associated with the different soils and herbicides radio -marked at the concentrations of 0.24 KBq of indaziflam, 0.26 KBq of imazapic or 0.20 KBq of amicarbazone, individually in each experimental unit. The concentration of radiolabelled herbicides present in the supernatant was determined by liquid scintillation spectroscopy (LSS) and by difference between the amount initially applied and the present in the soil solution, determining adsorption. Through the same process the herbicide desorption was also evaluated in four days of analysis For imazapic and amicarbazone, Kd values were low due to their high solubility in water; however, the adsorption of imazapic was strongly influenced by the pH of the soil, and for amicarbazone the adsorption and desorption was influenced by the organic matter and pH of the soils. For indaziflam, Kd was negatively correlated with clay content but was positively correlated with organic matter. The third experiment evaluated the adsorption of indaziflam, imazapic and amicarbazone in sugarcane straw. A typical study and batch equilibrium was conducted to determine adsorption and desorption at different concentrations of the herbicides. Sugarcane residues (0.27 g) was combined with three concentrations of the herbicides (0.125, 0.5 and 1 ppm) plus 0.24 KBq of indaziflam, 0.26 KBq imazapic or 0.20 KBq of labeled amicarbazone radio. The adsorption of indaziflam, imazapic and amicarbazone was evaluated 24, 48 and 120 hours, respectively, after the contact of sugarcane residues. Indaziflam adsorption was greater than 80% at all concentrations, while imazapic adsorption was below 7% at all concentrations. The adsorption of amicarbazone was less than 20% at all concentrations. Indaziflam desorption was 30%, 28.5% and 27.5% at 0.125, 0.5 and 1 ppm, respectively, after 5 days. Maximum desorption for amicarbazone was observed at 1 ppm with 11%. The desorption for imazapic was not determined due to the low initial adsorption. A fourth experiment, addressed the interception of herbicides by sugarcane straw through simulated rainfall in various amounts of precipitation (3, 6, 12 and 24 mm). Two amounts of sugarcane straw were uniformly spread over a stainless steel screen (5 t ha-1 and 10 t ha-1), then the screen was placed on a Pyrex® pan. The rain simulations occurred at 0 hr, 24 hrs and seven days after the treatments were applied. For indaziflam, a period of seven days after application of the herbicides on the sugarcane straw was simulated a precipitation of 24 mm resulting in the removal of only 25% of the adsorbed herbicide. For the herbicide imazapic the sugarcane straw did not present an expressive barrier to interception of this product. Thus, the characteristics of the herbicides, such as water solubility and Kow, can be used to determine their dynamics in sugarcane production systems, and the leaching, straw sorption and soil attributes can a predilection for agronomic behavior and environmental fate of residual herbicides.
|
59 |
Kohlenstoffnanorohr-Komplexe - Adsorption und Desorption von (Bio-)Polymeren / Carbon Nanotube Complexes - Adsorption and Desorption of (Bio-)PolymersBrunecker, Frank January 2015 (has links) (PDF)
Zur Charakterisierung der Wechselwirkungen zwischen organischen Dispergiermitteln und nanoskaligen Oberflächen stellen Komplexe aus Kohlenstoffnanoröhren und (Bio-)Polymeren aufgrund der großen Oberfläche der Nanoröhren und der kommerziellen Verfügbarkeit fluoreszenzmarkierter DNA-Oligomere unterschiedlicher Länge sowie intrinsisch fluoreszierender Polymere ein vielversprechendes Modellsystem dar. Im Rahmen der vorliegenden Dissertation wurden verschiedene Methoden evaluiert, um die Stabilität derartiger Komplexe zu untersuchen und dadurch Rückschlüsse auf das Adsorptionsverhalten der (Bio-)Polymere zu ziehen. Dabei konnte gezeigt werden, dass das publizierte helikale Adsorptionsmodell der DNA auf Kohlenstoffnanoröhren die Resultate der durchgeführten Experimente nur unzureichend beschreiben kann und stattdessen andere Adsorptionskonformationen in Erwägung gezogen werden müssen. / Interactions between organic dispersants and nanoscopic surfaces are of crucial interest in the field of nanotechnology. For characterization of such interactions, complexes of single-wall carbon nanotubes and (bio-)polymers are considered to be a promising model system due to the large specific surface of the nanotubes as well as the commercial availability of fluorescently labeled, length-scaled DNA oligomers and intrinsic fluorescent synthetic polymers. The present dissertation focused on probing suitable methods for the investigation of the stability of these complexes in order to determine the adsorption behavior of the examined (bio-)polymers. The findings of the performed experiments are inconsistent with the previously published helical adsorption of DNA to carbon nanotubes but give rise to additional adsorption conformations.
|
60 |
Adsorption and desorption of atrazine on a melamine-based soil amendmentNeitsch, Susan Lynn 30 September 2004 (has links)
Adsorption kinetics and adsorption-desorption of atrazine on organoclay composites prepared with the surfactant 6-piperazin-1-yl-N,N'-bis-(1,1,3,3-tetramethyl-butyl)-(1,3,5)triazine-2,4-diamine and Houston Black clay were studied using the indirect batch equilibration procedure. The organoclay composites sorbed significantly more atrazine than the Houston Black clay. Adsorption equilibrium was reached after 72 h for the organoclay composites. Atrazine adsorption isotherms were described by linear partitioning. The Koc values ranged from 605 to 5271 L kg-1 for the organoclay composites compared to a value of 41 L kg-1 for the Houston Black clay. The organoclay composite containing 20% surfactant on a total weight basis provided the most efficient adsorption of atrazine, although organoclay composites containing much lower amounts of surfactant also adsorbed significant amounts of atrazine. An average of 11% of sorbed atrazine was released during desorption. Characterization of desorption products showed only atrazine molecules being released from the organoclay composites.
|
Page generated in 0.0877 seconds