• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • Tagged with
  • 11
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La régulation des cellules souches adultes intestinales de drosophila melanogaster : Comment SPEN influence un destin cellulaire / Intestinal stem cell regulation in Drosophila melanogaster : how does SPEN control their fate ?

Andriatsilavo Rakoto, Mahéva 29 September 2015 (has links)
Les cellules souches adultes sont des cellules non différenciées, essentielles au le renouvellement constant de nos tissus. Elles produisent des cellules différenciées nécessaires au fonctionnement de nos organes, tout en maintenant un réservoir de cellules souches dans le tissu. Cet équilibre entre prolifération et différentiation cellulaire est crucial pour le maintien d’un état constant du tissu appelé homéostasie tissulaire. Entre identité « souche » et différenciation : Quels programmes génétiques contrôlent ces états ? Cette question suscite un intérêt majeur tant pour la recherche dans le domaine des cellules souches que pour les perspectives thérapeutiques qui en découlent. Dans cette optique, ce travail de thèse a permis de mettre en évidence un nouveau rôle du gène spen dans le contrôle des cellules souches intestinales chez Drosophila melanogaster. Une inactivation du gène spen est à l’origine d’une accumulation aberrante des cellules souches au sein de l’intestin de drosophile. La mise en place d’un protocole de purification par FACS des cellules souches, associé à un séquençage à grande échelle des ARN, a permis de mettre à jour les réseaux de gènes régulés par Spen dans les cellules souches. Ainsi, en combinant des techniques de génétique et d’analyses in vivo, ce travail montre que Spen est un facteur clé du processus de spécification des cellules souches intestinales et de la régulation de leur prolifération. Cette étude participe ainsi à la compréhension de la fonction moléculaire des protéines de la famille SPEN dans les cellules souches et les dérégulations à l’origine des pathologies auxquelles elles sont associées. / Adult stem cells are non-differentiated cells that maintain tissue homeostasis by supplying differentiated cells while at the same time self-renewing. How is this balance between stem cell state and differentiated state controlled? This question became one of the major interests of the Stem cell research and Translation, mostly due to the potential therapeutic perspectives that it gives. Regarding this effort, this thesis work describes a new function of a gene call split-ends/spen in adult stem cell regulation in Drosophila intestine. SPEN familly is composed by essential genes, which codes conserved proteins from Plants to Metazoa. They are involved in key cellular processes such as cell death, differentiation or proliferation, and are associated with various molecular functions controlling transcriptional and post-transcriptional gene expression. We found that a spen inactivation in Drosophila intestine leads to an abnormal increase in adult stem cells. In this work, by combining genetics tools and in vivo stem cell analysis methods, we could show that Spen works as a key factor of intestinal stem cell commitment and plays a role in their proliferation control. How does genetics programs control cellular identity? In order to investigate the molecular signature of intestinal stem cells and progenitor cells knockdowned for spen, we combined genetics, cell sorting and mRNA sequencing analysis to uncovered Spen target genes regulated in intestinal stem cells. Here, we provide a new function of spen in adult stem cell regulation, which may also shed light on its mode of action in other developmental and pathological contexts.
2

Différenciation et plasticité des cellules souches neurales

Flici, Hakima 21 September 2012 (has links) (PDF)
L'étude de la plasticité cellulaire est un puissant outil pour comprendre le choix du destin cellulaire pendant la différenciation et dans les processus cancéreux lors de la transformation d'une cellule normale en une cellule maligne. Chez la drosophile, le facteur de transcription Gcm contrôle la détermination du destin glial. Dans des mutants gcm, les cellules qui se développent normalement en glie entrent dans la voie de différenciation neuronale alors que l'expression ectopique de gcm dans des progéniteurs neuronaux induit de la glie. Ces données font de Gcm un outil important pour comprendre les bases de la plasticité cellulaire. Mon projet de thèse vise à comprendre les mécanismes contrôlant la plasticité des cellules souches neurales. Nous avons ainsi montré que la capacité des CSNs à se convertir en glie après expression forcée de Glide/Gcm décline avec l'âge et que lors de l'entrée en phase quiescente ou apoptotique, ils ne peuvent plus être convertis. Nous avons aussi découvert que le processus de conversion du destin ne se manifeste pas uniquement par l'expression de marqueurs gliaux mais aussi par des changements spécifiques au niveau de la chromatine. D'une manière intéressante, nous avons aussi montré que la stabilité de la protéine Glide/Gcm est contrôlée par deux voies opposées, où Repo et l'histone acetyltransférase CBP jouent un rôle majeur.
3

Choix du destin cellulaire et cinétique du cycle cellulaire : rôle de CDC25B durant la neurogenèse embryonnaire / Cell fate decision and cell cycle kinetics : roles of CDC25B in embryonic neurogenesis

Bonnet, Frédéric 19 July 2016 (has links)
Générer de la diversité cellulaire est essentiel en biologie du développement et pour préserver l'homéostasie des tissus chez l'adulte. Cela résulte du choix des cellules souches et progéniteurs à s'engager dans un destin particulier en réponse à des signaux extrinsèques et à des propriétés intrinsèques. L'objectif de ma thèse était d'élucider le rôle du cycle cellulaire dans le processus de neurogenèse (production de neurones) en utilisant comme paradigme le tube neural d'embryon de poulet. D'une part, j'ai développé une nouvelle stratégie d'imagerie permettant de mesurer la longueur des quatre phases du cycle cellulaire en temps réel dans les progéniteurs neuraux. D'autre part, j'ai réalisé des expériences de gain et perte de fonction d'un régulateur de l'entrée en mitose, la phosphatase CDC25B, dans les progéniteurs neuraux et montré que ce régulateur du cycle favorise les divisions neurogéniques au dépend des divisions prolifératives contrôlant ainsi la production neuronale. / Generating cell diversity is essential in developmental biology and to preserve tissue homeostasis in adulthood. This results from the choice of stem cells and progenitor cells to commit into a particular fate in response to extrinsic cues and to intrinsic properties. The aim of my PhD was to elucidate the role of the cell cycle in the neurogenesis process (i.e. in neuron generation) using the embryonic chick neural tube as a paradigm. On the one hand, I have developed a new real time imaging strategy to measure the length of the four cell cycle phases in neural progenitors. On the other hand, I performed gain and loss of function experiments of a regulator that control mitosis input, the CDC25B phosphatase, in neural progenitors and showed that this cell cycle regulator promotes neurogenic divisions at the expense of proliferative divisions, thus controlling neuronal production.
4

La dérivation de cellules souches embryonnaires chez le rat, Rattus norvegicus

Demers, Simon-Pierre January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
5

Différenciation et plasticité des cellules souches neurales / Neural stem cells plasticity and differentiation

Flici, Hakima 21 September 2012 (has links)
L’étude de la plasticité cellulaire est un puissant outil pour comprendre le choix du destin cellulaire pendant la différenciation et dans les processus cancéreux lors de la transformation d’une cellule normale en une cellule maligne. Chez la drosophile, le facteur de transcription Gcm contrôle la détermination du destin glial. Dans des mutants gcm, les cellules qui se développent normalement en glie entrent dans la voie de différenciation neuronale alors que l’expression ectopique de gcm dans des progéniteurs neuronaux induit de la glie. Ces données font de Gcm un outil important pour comprendre les bases de la plasticité cellulaire. Mon projet de thèse vise à comprendre les mécanismes contrôlant la plasticité des cellules souches neurales. Nous avons ainsi montré que la capacité des CSNs à se convertir en glie après expression forcée de Glide/Gcm décline avec l'âge et que lors de l'entrée en phase quiescente ou apoptotique, ils ne peuvent plus être convertis. Nous avons aussi découvert que le processus de conversion du destin ne se manifeste pas uniquement par l’expression de marqueurs gliaux mais aussi par des changements spécifiques au niveau de la chromatine. D’une manière intéressante, nous avons aussi montré que la stabilité de la protéine Glide/Gcm est contrôlée par deux voies opposées, où Repo et l’histone acetyltransférase CBP jouent un rôle majeur. / The study of cellular plasticity is a powerful tool to understand the mechanisms directing cell fate choice during differentiation and transformation of a normal cell into a cancerous one. In Drosophila, the transcription factor Gcm control glial fate determination. In gcm mutants, cells that normally develop into glia enter the path of neuronal differentiation, whereas ectopic expression of gcm in neural progenitors induces glia. These properties make gcm an important tool for understanding the basics of cellular plasticity. My thesis project aims to understand the mechanisms controlling the plasticity of neural stem cells (NSCs). Based on this aim, we showed that the ability of NSCs to be transformed into glia, after forced expression of Gcm, declines with age and that upon entry into quiescence or apoptosis, they cannot be converted. We also found that the process of fate conversion does not manifest itself only through the expression of glial markers but also by specific changes in the level of chromatin. Remarkably, we also showed that the stability of the protein Gcm is controlled by two opposite and interconnected loops, where Repo and the histone acetyltransferase CBP play a major role.
6

La dérivation de cellules souches embryonnaires chez le rat, Rattus norvegicus

Demers, Simon-Pierre January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
7

Etude des mécanismes de maintenance et de spécification des cellules souches et progénitrices de la rétine du xénope

Mazurier, Nicolas 19 December 2012 (has links) (PDF)
Au cours de ma thèse, mes projets de recherche ont visé à mieux comprendre les mécanismes moléculaires contrôlant la prolifération et la spécification des cellules progénitrices dans la rétine du xénope à travers trois projets principaux. Le réseau de régulation qui contrôle la spécification des cellules progénitrices vers les sous-types neuronaux est à ce jour très peu connu. C'est dans ce contexte que j'ai étudié le rôle du facteur de transcription à domaine bHLH, Ascl1, dans la détermination des sous-types rétiniens au cours du développement. Par des approches in vivo de gain et perte de fonction d'Ascl1, des expériences d'épistasie et la recherche de ses cibles transcriptionnelles, j'ai pu mettre en évidence qu'Ascl1 (i) est impliqué dans la genèse des neurones GABAergiques rétiniens, (ii) qu'il est épistatique sur des facteurs glutamatergiques tels que Neurog2, NeuroD1 ou Atoh7, (iii) que son activité GABAergique est conférée par son domaine basique de liaison à l'ADN et (iv) que cette activité implique la régulation directe du facteur de transcription Ptf1a. Ces données ajoutent donc une nouvelle pièce au réseau transcriptionnel gouvernant la spécification des sous-types GABAergiques au cours du développement de la rétine. La mise en place correcte des types et sous-types cellulaires de la rétine nécessite une coordination avec le moment de sortie du cycle cellulaire des progéniteurs rétiniens. Dans ce contexte, j'ai contribué à l'avancée d'un projet visant à étudier le réseau de signalisation contrôlant la prolifération des précurseurs de la rétine. Par des approches in vivo, génétiques et pharmacologiques, cette étude a montré que les voies Wnt et Hedgehog s'antagonisent pour réguler l'activité proliférative des cellules souches et progénitrices rétiniennes. Nos données préliminaires suggèrent que ces voies agissent de façon opposée à la fois sur la sortie et sur la cinétique du cycle cellulaire. Ce travail nous a conduit à proposer un modèle selon lequel ces voies Wnt et Hedgehog réguleraient la balance entre prolifération et différenciation dans la rétine post-embryonnaire. Enfin, dans le but d'élargir nos connaissances sur les réseaux de signalisation et les réseaux transcriptionnels impliqués dans le contrôle de la prolifération et de la détermination cellulaire dans la rétine, j'ai également contribué à la recherche de nouveaux marqueurs spécifiques des différentes populations cellulaires rétiniennes au travers d'un crible à grande échelle par hybridation in situ. De nombreux gènes spécifiquement exprimés dans les cellules souches ou les cellules progénitrices constituent des gènes candidats pour de futures approches fonctionnelles.
8

Influence de la signalisation thyroïdienne et du métabolisme mitochondrial sur le choix de destin des cellules souches neurales de la zone sous-ventriculaire chez la souris adulte / Impact of thyroid hormone signaling and mitochondrial metabolism on neural stem cell fate choice in the adult mouse subventricular zone

Gothie, Jean-David 11 October 2017 (has links)
Le cerveau adulte des mammifères conserve sa capacité à générer de nouvelles cellules cérébrales à partir de cellules souches neurales (CSNs), principalement localisées dans deux régions cérébrales spécifiques, l'hippocampe et la zone sous-ventriculaire (SVZ). Ce processus, appelé neurogenèse, permet la formation de nouveaux neurones et de nouvelles cellules gliales (astrocytes et oligodendrocytes). Différents signaux contrôlent la prolifération et la différenciation des CSNs. Parmi ces signaux, les hormones thyroïdiennes (HTs) sont impliquées dans la prolifération des CSNs de la SVZ et dans la différenciation neuronale. À l’inverse des cellules différenciées, telles que les neurones ou les glies, les CSNs ont un fonctionnement – ou métabolisme – principalement basé sur la glycolyse et sur une faible respiration mitochondriale. Or l'évolution du métabolisme des CSNs peut influencer leur choix de destin cellulaire. Les HTs jouant un rôle important dans l'activation du métabolisme mitochondrial, j'ai testé l'hypothèse selon laquelle le choix du destin des CSNs de la SVZ adulte se ferait grâce à l'influence de la signalisation thyroïdienne sur l'activité mitochondriale. J'ai tout d'abord montré in vivo et in vitro que les HTs permettent la détermination des CSNs en précurseurs neuronaux dans la SVZ, tandis qu'une période d'hypothyroïdisme favorise la détermination gliale. La transthyrétine, protéine de liaison des HTs, est spécifiquement présente dans les cellules de la SVZ ayant un destin neuronal, alors que la désiodase de type 3, inactivatrice des HTs, est exprimée par les précurseurs oligodendrocytaires (OPCs), indiquant une activationdifférentielle de la signalisation thyroïdienne dans les deux lignages cellulaires. Par ailleurs j'ai pu observer que les cellules s'engageant vers un destin neuronal possèdent une plus grande activité mitochondriale que les OPCs. La présence d'HTs favorise de plus la respiration mitochondriale, ainsi que la production de dérivés réactifs de l'oxygène (ROS) issus de l'activité des mitochondries, dans les cellules de la SVZ. Un blocage des protéines de la chaîne respiratoire empêche les HTs de promouvoir la détermination neuronale, montrant la nécessité de l'activation mitochondriale pour l'engagement des CSNs en précurseurs neuronaux. On sait d'autre part que les modifications morphologiques (ou dynamiques) mitochondriales sont nécessaires à l'augmentation de la respiration. La division (ou fission) des mitochondries est en particulier essentielle à une bonne répartition intracellulaire de la production de l'énergie issue de la respiration, ainsi qu'à la migration cellulaire. Dans les cellules de la SVZ, j'ai montré que l'action des HTs permet l'activation de la protéine DRP1, médiatrice de la fission mitochondriale, et ce principalement dans les cellules du lignage neuronal. Les HTs favorisent donc la détermination des CSNs de la SVZ vers un destin neuronal grâce à l'activation de la respiration et de la fission mitochondriales. / The adult mammalian brain maintains its capacity to generate new cells from neural stem cells (NSCs), mainly localized in two specific brain regions, the hippocampus and the sub-ventricular zone (SVZ). This process, named neurogenesis, results in the production of new neurons and new glial cells (astrocytes and oligodendrocytes). Several signals control NSCs proliferation and differentiation. Among those, thyroid hormones (THs) are involved in NSCs proliferation in the SVZ and in neuronal differentiation. NSC metabolism relies mainly on glycolysis associated with a low mitochondrial activity, whereas mature cells, like neurons and glia, preferentially use oxidative phosphorylation. Changes in NSC metabolism can impact cell fate. As THs play an important part in activating mitochondrial metabolism, I hypothesized that the influence of TH signaling on mitochondrial activity triggers NSC fate choice in the adult SVZ. First, I showed in vivo and in vitro that THs allow NSC determination in neuronal precursors, whereas a short hypothyroidism favors glial determination. Transthyretine, a TH binding protein, is specifically present in the SVZ cells having a neuronal fate, while type 3 deiodinase, a TH inhibitor, is expressed by oligodendrocyte precursor cells (OPCs). These results indicate that THs signaling isdifferentially activated in neuronal and glial cell lineages. I observed that cells adopting a neuronal fate display a greater mitochondrial activity when compared to OPCs, and that TH signaling favors mitochondrial respiration and ROS production in the SVZ cells. Inhibiting the mitochondrial respiratory chain prevents TH-mediated promotion of neuronal determination, proving the need of mitochondrial activation for NSC commitment toward a neuronal phenotype. Besides, it is also known that modifications of mitochondrial morphology (or mitochondrial dynamics) are required for the respiration to increase. Among mitochondrial dynamics, fission is crucial for a good intracellular repartition of energy production, and for cell migration. In the SVZ cells, I showed that, DRP1, the main inducer of mitochondrial fission, is activated by THs mainly in cells adopting a neuronal fate. Thus, THs favor NSC fate choice toward a neuronal phenotype through the activation of mitochondrial metabolism and mitochondrial fission in the adult mouse SVZ.
9

Caractérisation des premières étapes de différenciation des cellules hématopoïétiques à l'échelle de la cellule unique / Characterisation of the first step of hematopoietic cell differentiation at the single cell level

Moussy, Alice 31 October 2017 (has links)
Bien que largement étudiés, les mécanismes fondamentaux de prise de décision dans les processus de différenciation cellulaire restent mal compris. Les théories déterministes, souvent basées sur des études populationnelles, atteignent rapidement leur limite lorsqu’il s’agit d’expliquer les différences de choix individuels de cellules, pourtant exposées au même environnement. L’objectif de ma thèse est donc d’étudier les premières étapes de la différenciation des cellules hématopoïétiques à l’échelle de la cellule unique, par des analyses transcriptomiques, protéomiques et morphologiques. Ce travail a été effectué sur deux modèles de différenciation : les lymphocytes T régulateurs et les cellules CD34+ humaines issues de sang de cordon. Nous avons observé le comportement de ces cellules uniques après stimulation. Grâce à la combinaison de la microscopie en time lapse et des analyses moléculaires réalisées à l’échelle de la cellule individuelle, nous avons pu démontrer que le choix du devenir cellulaire n’était pas unique, programmé. La cellule passe d’abord par un état dit « multi-primed », métastable où elle exprime des gènes de plusieurs lignées différentes, puis elle passe par une phase dite « incertaine », instable où elle hésite entre deux phénotypes avant de se stabiliser dans un état fixe. Nos observations sont cohérentes avec une explication stochastique de la prise de décision. La différenciation serait donc un processus spontané, dynamique, fluctuant et non un processus prédéterminé. Les décisions du destin cellulaire sont prises séparément par les cellules individuelles. / Despite intensively studies, the fundamental mechanisms of cell fate decision during cellular differentiation still remain unclear. The deterministic mechanisms, often based on studies of large cell populations, cannot explain the difference between individual cell fates choices placed in the same environment. The aim of my thesis work is to study the first steps of hematopoietic cell differentiation at the single cell level thanks to transcriptomic, proteomic and morphological analyses. Two differentiation models have been used: T regulatory lymphocytes and human cord blood-derived CD34+ cells. The behavior of individual cells following stimulation has been analyzed. Using time-lapse microscopy coupled to single cell molecular analyses, we could demonstrate that the cell fate choice is not a unique, programmed event. First, the cell reaches a metastable “multi-primed” state, which is characterized by a mixed lineage gene expression pattern. After transition through an “uncertain”, unstable state, characterized by fluctuations between two phenotypes, the cell reaches a stable state. Our observations are coherent with a stochastic model of cell fate decision. The differentiation is likely to be a spontaneous, dynamic, fluctuating and not a deterministic process. The cell fate decisions are taken by individual cells.
10

Etude des mécanismes de maintenance et de spécification des cellules souches et progénitrices de la rétine du xénope / Studying maintenance and specification mechanisms in stem and progenitors cells in Xenopus retina

Mazurier, Nicolas 19 December 2012 (has links)
Au cours de ma thèse, mes projets de recherche ont visé à mieux comprendre les mécanismes moléculaires contrôlant la prolifération et la spécification des cellules progénitrices dans la rétine du xénope à travers trois projets principaux. Le réseau de régulation qui contrôle la spécification des cellules progénitrices vers les sous-types neuronaux est à ce jour très peu connu. C’est dans ce contexte que j’ai étudié le rôle du facteur de transcription à domaine bHLH, Ascl1, dans la détermination des sous-types rétiniens au cours du développement. Par des approches in vivo de gain et perte de fonction d’Ascl1, des expériences d’épistasie et la recherche de ses cibles transcriptionnelles, j’ai pu mettre en évidence qu’Ascl1 (i) est impliqué dans la genèse des neurones GABAergiques rétiniens, (ii) qu’il est épistatique sur des facteurs glutamatergiques tels que Neurog2, NeuroD1 ou Atoh7, (iii) que son activité GABAergique est conférée par son domaine basique de liaison à l’ADN et (iv) que cette activité implique la régulation directe du facteur de transcription Ptf1a. Ces données ajoutent donc une nouvelle pièce au réseau transcriptionnel gouvernant la spécification des sous-types GABAergiques au cours du développement de la rétine. La mise en place correcte des types et sous-types cellulaires de la rétine nécessite une coordination avec le moment de sortie du cycle cellulaire des progéniteurs rétiniens. Dans ce contexte, j’ai contribué à l’avancée d’un projet visant à étudier le réseau de signalisation contrôlant la prolifération des précurseurs de la rétine. Par des approches in vivo, génétiques et pharmacologiques, cette étude a montré que les voies Wnt et Hedgehog s’antagonisent pour réguler l’activité proliférative des cellules souches et progénitrices rétiniennes. Nos données préliminaires suggèrent que ces voies agissent de façon opposée à la fois sur la sortie et sur la cinétique du cycle cellulaire. Ce travail nous a conduit à proposer un modèle selon lequel ces voies Wnt et Hedgehog réguleraient la balance entre prolifération et différenciation dans la rétine post-embryonnaire. Enfin, dans le but d’élargir nos connaissances sur les réseaux de signalisation et les réseaux transcriptionnels impliqués dans le contrôle de la prolifération et de la détermination cellulaire dans la rétine, j’ai également contribué à la recherche de nouveaux marqueurs spécifiques des différentes populations cellulaires rétiniennes au travers d’un crible à grande échelle par hybridation in situ. De nombreux gènes spécifiquement exprimés dans les cellules souches ou les cellules progénitrices constituent des gènes candidats pour de futures approches fonctionnelles. / My thesis research work aimed to better understand the molecular mechanisms underlying proliferation and specification of retinal progenitors in Xenopus through three main projects. As the mechanisms governing specification of retinal progenitors towards the different neuronal subtypes are still poorly understood, I focused my work on the role of Ascl1, a bHLH transcription factor, in cell-subtype determination during retinogenesis. Using in vivo gain- and loss-of-function experiments, I have investigated Ascl1’s epistatic relationships with other bHLH factors and identified its transcriptional targets. My results indicate that Ascl1 (i) is implicated in the genesis of retinal GABAergic neurons (ii) is epistatic to glutamatergic factors such as Neurog2, NeuroD1 and Atoh7 (iii) that its basic DNA-biding domain is sufficient for its GABAergic-inducing activity (iv) and that this activity involves a direct regulation of the Ptf1a transcription factor. The correct order of neural cell types and subtypes formation is tightly coordinated with the timing of cell-cycle exit of retinal progenitors. Ongoing work in the laboratory, to which I have contributed, was therefore investigating the role of signaling pathways controlling retinal precursor proliferation in this process. Using in vivo genetic and pharmacological tools, we have shown that an antagonistic cross-regulation between Wnt and Hedgehog signaling governs stem cell and progenitor proliferation in post-embryonic retina. Preliminary data shows that Wnt and Hedgehog have opposite effects on both cell cycle exit and kinetics and may therefore regulate the proliferation/differentiation balance in the post-embryonic retina. Lastly, in order to broaden our knowledge on the transcriptional and signaling networks which govern proliferation and cell fate determination in the retina, I have participated in a large scale screen by in situ hybridization aiming to identify new molecular markers of different retinal cell population. Many genes that are exclusively expressed in retinal stem cells or progenitors are promising candidates for future functional studies.

Page generated in 0.0958 seconds