Spelling suggestions: "subject:"detailed balance"" "subject:"etailed balance""
1 |
Infinite system of Brownian balls : equilibrium measures are canonical GibbsRoelly, Sylvie, Fradon, Myriam January 2006 (has links)
We consider a system of infinitely many hard balls in R<sup>d</sup> undergoing Brownian motions and submitted to a smooth pair potential. It is modelized by an infinite-dimensional stochastic differential equation with a local time term. We prove that the set of all equilibrium measures, solution of a detailed balance equation, coincides with the set of canonical Gibbs measures associated to the hard core potential added to the smooth interaction potential.
|
2 |
Infinite system of Brownian Balls: Equilibrium measures are canonical GibbsFradon, Myriam, Roelly, Sylvie January 2005 (has links)
We consider a system of infinitely many hard balls in Rd undergoing Brownian motions and submitted to a smooth pair potential. It is modelized by an infinite-dimensional Stochastic Differential Equation with a local time term. We prove that the set of all equilibrium measures, solution of a Detailed Balance Equation, coincides with the set of canonical Gibbs measures associated to the hard core potential added to the smooth interaction potential.
|
3 |
Kernel Selection for Convergence and Efficiency in Markov Chain Monte CarolPotter, Christopher C. J. 24 April 2013 (has links)
Markov Chain Monte Carlo (MCMC) is a technique for sampling from a target probability distribution, and has risen in importance as faster computing hardware has made possible the exploration of hitherto difficult distributions. Unfortunately, this powerful technique is often misapplied by poor selection of transition kernel for the Markov chain that is generated by the simulation.
Some kernels are used without being checked against the convergence requirements for MCMC (total balance and ergodicity), but in this work we prove the existence of a simple proxy for total balance that is not as demanding as detailed balance, the most widely used standard. We show that, for discrete-state MCMC, that if a transition kernel is equivalent when it is “reversed” and applied to data which is also “reversed”, then it satisfies total balance. We go on to prove that the sequential single-variable update Metropolis kernel, where variables are simply updated in order, does indeed satisfy total balance for many discrete target distributions, such as the Ising model with uniform exchange constant.
Also, two well-known papers by Gelman, Roberts, and Gilks (GRG)[1, 2] have proposed the application of the results of an interesting mathematical proof to the realistic optimization of Markov Chain Monte Carlo computer simulations. In particular, they advocated tuning the simulation parameters to select an acceptance ratio of 0.234 .
In this paper, we point out that although the proof is valid, its result’s application to practical computations is not advisable, as the simulation algorithm considered in the proof is so inefficient that it produces very poor results under all circumstances. The algorithm used by Gelman, Roberts, and Gilks is also shown to introduce subtle time-dependent correlations into the simulation of intrinsically independent variables. These correlations are of particular interest since they will be present in all simulations that use multi-dimensional MCMC moves.
|
4 |
Advanced Hybrid Solar Cell Approaches for Future Generation Ultra-High Efficiency Photovoltaic DevicesJanuary 2014 (has links)
abstract: Increasing the conversion efficiencies of photovoltaic (PV) cells beyond the single junction theoretical limit is the driving force behind much of third generation solar cell research. Over the last half century, the experimental conversion efficiency of both single junction and tandem solar cells has plateaued as manufacturers and researchers have optimized various materials and structures. While existing materials and technologies have remarkably good conversion efficiencies, they are approaching their own limits. For example, tandem solar cells are currently well developed commercially but further improvements through increasing the number of junctions struggle with various issues related to material interfacial defects. Thus, there is a need for novel theoretical and experimental approaches leading to new third generation cell structures. Multiple exciton generation (MEG) and intermediate band (IB) solar cells have been proposed as third generation alternatives and theoretical modeling suggests they can surpass the detailed balance efficiency limits of single junction and tandem solar cells. MEG or IB solar cell has a variety of advantages enabling the use of low bandgap materials. Integrating MEG and IB with other cell types to make novel solar cells (such as MEG with tandem, IB with tandem or MEG with IB) potentially offers improvements by employing multi-physics effects in one device. This hybrid solar cell should improve the properties of conventional solar cells with a reduced number of junction, increased light-generated current and extended material selections. These multi-physics effects in hybrid solar cells can be achieved through the use of nanostructures taking advantage of the carrier confinement while using existing solar cell materials with excellent characteristics. This reduces the additional cost to develop novel materials and structures. In this dissertation, the author develops thermodynamic models for several novel types of solar cells and uses these models to optimize and compare their properties to those of existing PV cells. The results demonstrate multiple advantages from combining MEG and IB technology with existing solar cell structures. / Dissertation/Thesis / Ph.D. Electrical Engineering 2014
|
5 |
Generation of H-Atom Pulses and Associative Desorption of Hydrogen Isotopologues from Metal SurfacesKaufmann, Sven 11 October 2017 (has links)
No description available.
|
6 |
Transition Matrix Monte Carlo Methods for Density of States PredictionHaber, René 03 July 2014 (has links) (PDF)
Ziel dieser Arbeit ist zunächst die Entwicklung einer Vergleichsgrundlage, auf Basis derer Algorithmen zur Berechnung der Zustandsdichte verglichen werden können. Darauf aufbauend wird ein bestehendes übergangsmatrixbasiertes Verfahren für das großkanonisch Ensemble um ein neues Auswerteverfahren erweitert. Dazu werden numerische Untersuchungen verschiedener Monte-Carlo-Algorithmen zur Berechnung der Zustandsdichte durchgeführt. Das Hauptaugenmerk liegt dabei auf Verfahren, die auf Übergangsmatrizen basieren, sowie auf dem Verfahren von Wang und Landau.
Im ersten Teil der Forschungsarbeit wird ein umfassender Überblick über Monte-Carlo-Methoden und Auswerteverfahren zur Bestimmung der Zustandsdichte sowie über verwandte Verfahren gegeben. Außerdem werden verschiedene Methoden zur Berechnung der Zustandsdichte aus Übergangsmatrizen vorgestellt und diskutiert.
Im zweiten Teil der Arbeit wird eine neue Vergleichsgrundlage für Algorithmen zur Bestimmung der Zustandsdichte erarbeitet. Dazu wird ein neues Modellsystem entwickelt, an dem verschiedene Parameter frei gewählt werden können und für das die exakte Zustandsdichte sowie die exakte Übergangsmatrix bekannt sind. Anschließend werden zwei weitere Systeme diskutiert für welche zumindest die exakte Zustandsdichte bekannt ist: das Ising Modell und das Lennard-Jones System.
Der dritte Teil der Arbeit beschäftigt sich mit numerischen Untersuchungen an einer Auswahl der vorgestellten Verfahren. Auf Basis der entwickelten Vergleichsgrundlage wird der Einfluss verschiedener Parameter auf die Qualität der berechneten Zustandsdichte quantitativ bestimmt. Es wird gezeigt, dass Übergangsmatrizen in Simulationen mit Wang-Landau-Verfahren eine wesentlich bessere Zustandsdichte liefern als das Verfahren selbst.
Anschließend werden die gewonnenen Erkenntnisse genutzt um ein neues Verfahren zu entwickeln mit welchem die Zustandsdichte mittels Minimierung der Abweichungen des detaillierten Gleichgewichts aus großen, dünnbesetzten Übergangsmatrizen gewonnen werden kann. Im Anschluss wird ein Lennard-Jones-System im großkanonischen Ensemble untersucht. Es wird gezeigt, dass durch das neue Verfahren Zustandsdichte und Dampfdruckkurve bestimmt werden können, welche qualitativ mit Referenzdaten übereinstimmen.
|
7 |
Transition Matrix Monte Carlo Methods for Density of States PredictionHaber, René 20 June 2014 (has links)
Ziel dieser Arbeit ist zunächst die Entwicklung einer Vergleichsgrundlage, auf Basis derer Algorithmen zur Berechnung der Zustandsdichte verglichen werden können. Darauf aufbauend wird ein bestehendes übergangsmatrixbasiertes Verfahren für das großkanonisch Ensemble um ein neues Auswerteverfahren erweitert. Dazu werden numerische Untersuchungen verschiedener Monte-Carlo-Algorithmen zur Berechnung der Zustandsdichte durchgeführt. Das Hauptaugenmerk liegt dabei auf Verfahren, die auf Übergangsmatrizen basieren, sowie auf dem Verfahren von Wang und Landau.
Im ersten Teil der Forschungsarbeit wird ein umfassender Überblick über Monte-Carlo-Methoden und Auswerteverfahren zur Bestimmung der Zustandsdichte sowie über verwandte Verfahren gegeben. Außerdem werden verschiedene Methoden zur Berechnung der Zustandsdichte aus Übergangsmatrizen vorgestellt und diskutiert.
Im zweiten Teil der Arbeit wird eine neue Vergleichsgrundlage für Algorithmen zur Bestimmung der Zustandsdichte erarbeitet. Dazu wird ein neues Modellsystem entwickelt, an dem verschiedene Parameter frei gewählt werden können und für das die exakte Zustandsdichte sowie die exakte Übergangsmatrix bekannt sind. Anschließend werden zwei weitere Systeme diskutiert für welche zumindest die exakte Zustandsdichte bekannt ist: das Ising Modell und das Lennard-Jones System.
Der dritte Teil der Arbeit beschäftigt sich mit numerischen Untersuchungen an einer Auswahl der vorgestellten Verfahren. Auf Basis der entwickelten Vergleichsgrundlage wird der Einfluss verschiedener Parameter auf die Qualität der berechneten Zustandsdichte quantitativ bestimmt. Es wird gezeigt, dass Übergangsmatrizen in Simulationen mit Wang-Landau-Verfahren eine wesentlich bessere Zustandsdichte liefern als das Verfahren selbst.
Anschließend werden die gewonnenen Erkenntnisse genutzt um ein neues Verfahren zu entwickeln mit welchem die Zustandsdichte mittels Minimierung der Abweichungen des detaillierten Gleichgewichts aus großen, dünnbesetzten Übergangsmatrizen gewonnen werden kann. Im Anschluss wird ein Lennard-Jones-System im großkanonischen Ensemble untersucht. Es wird gezeigt, dass durch das neue Verfahren Zustandsdichte und Dampfdruckkurve bestimmt werden können, welche qualitativ mit Referenzdaten übereinstimmen.
|
Page generated in 0.0511 seconds