Spelling suggestions: "subject:"detecção dde fraude"" "subject:"detecção dee fraude""
1 |
Combinação de classificadores para detecção de fraudes em sinistros de automóveis.Rodrigues, Luis Alexandre 05 August 2014 (has links)
Made available in DSpace on 2016-03-15T19:37:51Z (GMT). No. of bitstreams: 1
Luis Alexandre Rodrigues.pdf: 1364668 bytes, checksum: ac6c4273730fb6f75f7a0ceead7e4c1f (MD5)
Previous issue date: 2014-08-05 / Universidade Presbiteriana Mackenzie / This work presents a process to detect suspected cases of fraud at automobile claims dataset, which is evaluated the economic created by it. Because of a detection process presenting
misclassific ation, it is necessary to evaluate the financial economy made by the process not only its accuracy in detecting suspected cases of fraud. This process uses a combination of classifiers, with C4.5 Decision Tree, Naive Bayes and Support Vector Machine, const
ructed by samples of the data set with automobile claims. This way, the process defined by this work can obtain the balance between the accuracy of classification and the financial economy. / Este trabalho apresenta um processo para detectar casos suspeitos de fraude em conjunto de dados com sinistros de automóvel, em que é avaliada a economia financeira gerada por ele. Devido ao fato de um processo de detecção apresentar erros de classificação, é necessário avaliar a economia financeira apresentada pelo processo e não somente a sua precisão na detecção de casos suspeitos de fraude. Este processo utiliza a combinação de classificadores,
sendo Árvore de Decisão C4.5, Naive Bayes e Support Vector
Machine, construídos por amostras do conjunto de dados com sinistros de automóvel. Desta forma, o processo definido por este trabalho pode obter o equilíbrio entre a precisão da classificação e a economia financeira.
|
2 |
Detecção de fraudes em transações financeiras via Internet em tempo real. / Frauds detections in financial transactions via Internet in real time.Kovach, Stephan 15 June 2011 (has links)
Um dos objetivos mais importantes de qualquer sistema de detecção de fraudes, independente de seu domínio de operação, é detectar o maior número de fraudes com menor número de alarmes falsos, também denominados de falsos positivos. A existência de falsos positivos é um fato inerente a qualquer sistema de detecção fraudes. O primeiro passo para alcançar esse objetivo é identificar os atributos que podem ser usados para diferenciar atividades legítimas das fraudulentas. O próximo passo consiste em identificar um método para cada atributo escolhido para efetuar essa distinção. A escolha adequada dos atributos e dos métodos correspondentes determina em grande parte o desempenho de um detector de fraudes tanto em termos da relação entre o número de fraudes detectadas e o número de falsos positivos, quanto em termos de tempo de processamento. O desafio desta escolha é maior ao se tratar de um detector de fraudes em tempo real, isto é, fazer a detecção antes que a fraude seja concretizada. O objetivo deste trabalho é apresentar a proposta de uma arquitetura de um sistema de detecção de fraudes em tempo real em transações bancárias via Internet, baseando-se em observações do comportamento local e global de usuários. O método estatístico baseado em análise diferencial é usado para obter a evidência local de uma fraude. Neste caso, a evidência de fraude é baseada na diferença entre os perfis de comportamento atual e histórico do usuário. A evidência local de fraude é fortalecida ou enfraquecida pelo comportamento global do usuário. Neste caso, a evidência de fraude é baseada no número de acessos efetuados em contas diferentes feitos pelo dispositivo utilizado pelo usuário, e por um valor probabilístico que varia com o tempo. A teoria matemática de evidências de Dempster-Shafer é utilizada para combinar estas evidências e obter um escore final. Este escore é então comparado com um limiar para disparar um alarme indicando a fraude. A principal inovação e contribuição deste trabalho estão na definição e exploração dos métodos de detecção baseados em atributos globais que são de natureza específica do domínio de transações financeiras. Os resultados da avaliação utilizando uma base de dados com registros de transações correspondentes a perfis reais de uso demonstraram que a integração de um detector baseado em atributos globais fez aumentar a capacidade do sistema de detectar fraudes em 20%. / One of the most important goals of any fraud detection system, whichever is the domain where it characterizes the possibility for fraud, is to detect the largest number of frauds with fewer false alarms, also denominated false positives. The existence of false positives is a fact inherent to any fraud detection system. The first step in achieving this goal is to identify the attributes that can be used to differentiate between legitimate and fraudulent activities. The next step is to identify a method for each attribute chosen to make this distinction. The proper choice of the attributes and corresponding methods largely determines the performance of a fraud detector, not only in terms of the rate between the number of detected frauds and the number of false positives, but in terms of processing time. The challenge of this choice is higher when dealing with fraud detection in real time, that is, making the detection before the fraud is carried out. The aim of this work is to present the proposal of an architecture of a real time fraud detection system for Internet banking transactions, based on local and global observations of users behavior. The statistical method based on differential analysis is used to obtain the local evidence of fraud. In this case, the evidence of fraud is based on the difference between the current and historical behavior of the user. The frauds local evidence is strengthened or weakened by the users global behavior. In this case, the evidence of fraud is based on the number of accesses performed on different accounts made by the device used by the user and by a probability value that varies over time. The Dempster-Shafers mathematical theory of evidence is applied in order to combine these evidences for final suspicion score of fraud. This score is then compared with a threshold to trigger an alarm indicating the fraud. The main innovation and contribution of this work are the definition and exploration of detection methods based on global attributes which are domain specific of financial transactions. The evaluation results using a database with records of transactions corresponding to actual usage profiles showed that the integration of a detector based on global attributes improves the system capacity to detect frauds in 20%.
|
3 |
Atualização dinâmica de modelo de regressão logística binária para detecção de fraudes em transações eletrônicas com cartão de crédito / Dynamic update of binary logistic regression model for fraud detection in electronic credit card transactionsBeraldi, Fidel 01 December 2014 (has links)
Com o avanço tecnológico e econômico, que facilitaram o processo de comunicação e aumento do poder de compra, transações com cartão de crédito tornaram-se o principal meio de pagamento no varejo nacional e internacional (Bolton e Hand , 2002). Neste aspecto, o aumento do número de transações com cartão de crédito é crucial para a geração de mais oportunidades para fraudadores produzirem novas formas de fraudes, o que resulta em grandes perdas para o sistema financeiro (Chan et al. , 1999). Os índices de fraudes têm mostrado que transações no comércio eletrônico (e-commerce) são mais arriscadas do que transações presencias em terminais, pois aquelas não fazem uso de processos seguros e eficientes de autenticação do portador do cartão, como utilização de senha eletrônica. Como os fraudadores se adaptam rapidamente às medidas de prevenção, os modelos estatísticos para detecção de fraudes precisam ser adaptáveis e flexíveis para evoluir ao longo do tempo de maneira dinâmica. Raftery et al. (2010) desenvolveram um método chamado Dynamic Model Averaging (DMA), ou Ponderação Dinâmica de Modelos, que implementa um processo de atualização contínuo ao longo do tempo. Nesta dissertação, desenvolvemos modelos DMA no espaço de transações eletrônicas oriundas do comércio eletrônico que incorporem as tendências e características de fraudes em cada período de análise. Também desenvolvemos modelos de regressão logística clássica com o objetivo de comparar as performances no processo de detecção de fraude. Os dados utilizados para tal são provenientes de uma empresa de meios de pagamentos eletrônico. O experimento desenvolvido mostra que os modelos DMA apresentaram resultados melhores que os modelos de regressão logística clássica quando analisamos a medida F e a área sob a curva ROC (AUC). A medida F para o modelo DMA ficou em 58% ao passo que o modelo de regressão logística clássica ficou em 29%. Já para a AUC, o modelo DMA alcançou 93% e o modelo de regressão logística clássica 84%. Considerando os resultados encontrados para os modelos DMA, podemos concluir que sua característica de atualização ao longo do tempo se mostra um grande diferencial em dados como os de fraude, que sofrem mudanças de comportamento a todo momento. Deste modo, sua aplicação se mostra adequada no processo de detecção de transações fraudulentas no ambiente de comércio eletrônico. / Regarding technological and economic development, which made communication process easier and increased purchasing power, credit card transactions have become the primary payment method in national and international retailers (Bolton e Hand , 2002). In this scenario, as the number of transactions by credit card grows, more opportunities are created for fraudsters to produce new ways of fraud, resulting in large losses for the financial system (Chan et al. , 1999). Fraud indexes have shown which e-commerce transactions are riskier than card present transactions, since those do not use secure and efficient processes to authenticate the cardholder, such as using personal identification number (PIN). Due to fraudsters adapt quickly to fraud prevention measures, statistical models for fraud detection need to be adaptable and flexible to change over time in a dynamic way. Raftery et al. (2010) developed a method called Dynamic Model Averaging (DMA), which implements a process of continuous updating over time. In this thesis, we develop DMA models within electronic transactions coming from ecommerce environment, which incorporate the trends and characteristics of fraud in each period of analysis. We have also developed classic logistic regression models in order to compare their performances in the fraud detection processes. The database used for the experiment was provided by a electronic payment service company. The experiment shows that DMA models present better results than classic logistic regression models in respect to the analysis of the area under the ROC curve (AUC) and F measure. The F measure for the DMA was 58% while the classic logistic regression model was 29%. For the AUC, the DMA model reached 93% and the classical model reached 84%. Considering the results for DMA models, we can conclude that its update over time characteristic makes a large difference when it comes to the analysis of fraud data, which undergo behavioral changes continuously. Thus, its application has proved to be appropriate for the detection process of fraudulent transactions in the e-commerce environment.
|
4 |
Detecção de fraudes em transações financeiras via Internet em tempo real. / Frauds detections in financial transactions via Internet in real time.Stephan Kovach 15 June 2011 (has links)
Um dos objetivos mais importantes de qualquer sistema de detecção de fraudes, independente de seu domínio de operação, é detectar o maior número de fraudes com menor número de alarmes falsos, também denominados de falsos positivos. A existência de falsos positivos é um fato inerente a qualquer sistema de detecção fraudes. O primeiro passo para alcançar esse objetivo é identificar os atributos que podem ser usados para diferenciar atividades legítimas das fraudulentas. O próximo passo consiste em identificar um método para cada atributo escolhido para efetuar essa distinção. A escolha adequada dos atributos e dos métodos correspondentes determina em grande parte o desempenho de um detector de fraudes tanto em termos da relação entre o número de fraudes detectadas e o número de falsos positivos, quanto em termos de tempo de processamento. O desafio desta escolha é maior ao se tratar de um detector de fraudes em tempo real, isto é, fazer a detecção antes que a fraude seja concretizada. O objetivo deste trabalho é apresentar a proposta de uma arquitetura de um sistema de detecção de fraudes em tempo real em transações bancárias via Internet, baseando-se em observações do comportamento local e global de usuários. O método estatístico baseado em análise diferencial é usado para obter a evidência local de uma fraude. Neste caso, a evidência de fraude é baseada na diferença entre os perfis de comportamento atual e histórico do usuário. A evidência local de fraude é fortalecida ou enfraquecida pelo comportamento global do usuário. Neste caso, a evidência de fraude é baseada no número de acessos efetuados em contas diferentes feitos pelo dispositivo utilizado pelo usuário, e por um valor probabilístico que varia com o tempo. A teoria matemática de evidências de Dempster-Shafer é utilizada para combinar estas evidências e obter um escore final. Este escore é então comparado com um limiar para disparar um alarme indicando a fraude. A principal inovação e contribuição deste trabalho estão na definição e exploração dos métodos de detecção baseados em atributos globais que são de natureza específica do domínio de transações financeiras. Os resultados da avaliação utilizando uma base de dados com registros de transações correspondentes a perfis reais de uso demonstraram que a integração de um detector baseado em atributos globais fez aumentar a capacidade do sistema de detectar fraudes em 20%. / One of the most important goals of any fraud detection system, whichever is the domain where it characterizes the possibility for fraud, is to detect the largest number of frauds with fewer false alarms, also denominated false positives. The existence of false positives is a fact inherent to any fraud detection system. The first step in achieving this goal is to identify the attributes that can be used to differentiate between legitimate and fraudulent activities. The next step is to identify a method for each attribute chosen to make this distinction. The proper choice of the attributes and corresponding methods largely determines the performance of a fraud detector, not only in terms of the rate between the number of detected frauds and the number of false positives, but in terms of processing time. The challenge of this choice is higher when dealing with fraud detection in real time, that is, making the detection before the fraud is carried out. The aim of this work is to present the proposal of an architecture of a real time fraud detection system for Internet banking transactions, based on local and global observations of users behavior. The statistical method based on differential analysis is used to obtain the local evidence of fraud. In this case, the evidence of fraud is based on the difference between the current and historical behavior of the user. The frauds local evidence is strengthened or weakened by the users global behavior. In this case, the evidence of fraud is based on the number of accesses performed on different accounts made by the device used by the user and by a probability value that varies over time. The Dempster-Shafers mathematical theory of evidence is applied in order to combine these evidences for final suspicion score of fraud. This score is then compared with a threshold to trigger an alarm indicating the fraud. The main innovation and contribution of this work are the definition and exploration of detection methods based on global attributes which are domain specific of financial transactions. The evaluation results using a database with records of transactions corresponding to actual usage profiles showed that the integration of a detector based on global attributes improves the system capacity to detect frauds in 20%.
|
5 |
Atualização dinâmica de modelo de regressão logística binária para detecção de fraudes em transações eletrônicas com cartão de crédito / Dynamic update of binary logistic regression model for fraud detection in electronic credit card transactionsFidel Beraldi 01 December 2014 (has links)
Com o avanço tecnológico e econômico, que facilitaram o processo de comunicação e aumento do poder de compra, transações com cartão de crédito tornaram-se o principal meio de pagamento no varejo nacional e internacional (Bolton e Hand , 2002). Neste aspecto, o aumento do número de transações com cartão de crédito é crucial para a geração de mais oportunidades para fraudadores produzirem novas formas de fraudes, o que resulta em grandes perdas para o sistema financeiro (Chan et al. , 1999). Os índices de fraudes têm mostrado que transações no comércio eletrônico (e-commerce) são mais arriscadas do que transações presencias em terminais, pois aquelas não fazem uso de processos seguros e eficientes de autenticação do portador do cartão, como utilização de senha eletrônica. Como os fraudadores se adaptam rapidamente às medidas de prevenção, os modelos estatísticos para detecção de fraudes precisam ser adaptáveis e flexíveis para evoluir ao longo do tempo de maneira dinâmica. Raftery et al. (2010) desenvolveram um método chamado Dynamic Model Averaging (DMA), ou Ponderação Dinâmica de Modelos, que implementa um processo de atualização contínuo ao longo do tempo. Nesta dissertação, desenvolvemos modelos DMA no espaço de transações eletrônicas oriundas do comércio eletrônico que incorporem as tendências e características de fraudes em cada período de análise. Também desenvolvemos modelos de regressão logística clássica com o objetivo de comparar as performances no processo de detecção de fraude. Os dados utilizados para tal são provenientes de uma empresa de meios de pagamentos eletrônico. O experimento desenvolvido mostra que os modelos DMA apresentaram resultados melhores que os modelos de regressão logística clássica quando analisamos a medida F e a área sob a curva ROC (AUC). A medida F para o modelo DMA ficou em 58% ao passo que o modelo de regressão logística clássica ficou em 29%. Já para a AUC, o modelo DMA alcançou 93% e o modelo de regressão logística clássica 84%. Considerando os resultados encontrados para os modelos DMA, podemos concluir que sua característica de atualização ao longo do tempo se mostra um grande diferencial em dados como os de fraude, que sofrem mudanças de comportamento a todo momento. Deste modo, sua aplicação se mostra adequada no processo de detecção de transações fraudulentas no ambiente de comércio eletrônico. / Regarding technological and economic development, which made communication process easier and increased purchasing power, credit card transactions have become the primary payment method in national and international retailers (Bolton e Hand , 2002). In this scenario, as the number of transactions by credit card grows, more opportunities are created for fraudsters to produce new ways of fraud, resulting in large losses for the financial system (Chan et al. , 1999). Fraud indexes have shown which e-commerce transactions are riskier than card present transactions, since those do not use secure and efficient processes to authenticate the cardholder, such as using personal identification number (PIN). Due to fraudsters adapt quickly to fraud prevention measures, statistical models for fraud detection need to be adaptable and flexible to change over time in a dynamic way. Raftery et al. (2010) developed a method called Dynamic Model Averaging (DMA), which implements a process of continuous updating over time. In this thesis, we develop DMA models within electronic transactions coming from ecommerce environment, which incorporate the trends and characteristics of fraud in each period of analysis. We have also developed classic logistic regression models in order to compare their performances in the fraud detection processes. The database used for the experiment was provided by a electronic payment service company. The experiment shows that DMA models present better results than classic logistic regression models in respect to the analysis of the area under the ROC curve (AUC) and F measure. The F measure for the DMA was 58% while the classic logistic regression model was 29%. For the AUC, the DMA model reached 93% and the classical model reached 84%. Considering the results for DMA models, we can conclude that its update over time characteristic makes a large difference when it comes to the analysis of fraud data, which undergo behavioral changes continuously. Thus, its application has proved to be appropriate for the detection process of fraudulent transactions in the e-commerce environment.
|
Page generated in 0.0883 seconds