311 |
Computational Study of Pi-Pi Stacking Interactions in Large Curved and Planar Polycyclic Aromatic HydrocarbonsKarunarathna, A A Sasith N 14 December 2013 (has links)
Theoretical studies of pi-pi interactions on several dimers of curved polycyclic aromatic systems have been carried out. In the first part, dispersion corrected density functional theory methods (DC-DFT) were used to evaluate the basis set superposition errors (BSSE) in dispersion interactions of the corannulene dimer, and the accuracy of the calculations using DC-DFT methods was compared with high level benchmark calculations. In these calculations, Grimme’s B97D DC-DFT method provided reasonably accurate results with the benchmark calculations. In addition, BSSE obtained with the B97D method along with cc-pVQZ basis set was negligible. Furthermore, a series of calculations were carried out to obtain the pi-pi interaction energy and most stable conformation for the sumanene dimer system. In these calculations, Grimme’s B97D method was used. The potential energy minimum of the sumanene dimer was determined as the concave-convex stacked arrangement with one monomer unit rotated to 60°. The binding energy of the dimer was found to be 19.34 kcal/mol with a 3.72 angstrom distance between two monomer units. Dimers of three different heterosumanenes along with the parent sumanene were also studied. In this set of calculations, two different concave-convex dimer motifs were chosen, eclipsed and staggered (60° rotated). For all the heterosumanenes, as well as the parent sumanene, the staggered conformation is the most stable geometry. The parent sumanene had the highest binding energy. The –NH substituted sumanene produced the second highest binding energy, while the –O analog was the weakest bonded dimer. Finally, dispersion calculations were carried out for the planar aromatic compound of triphenylene. The pi-system of the dimer was distorted by rotating one monomer unit around the principle axis and parallel displacing one monomer unit relative to the other one. Among the rotational dimers, the 39° rotated dimer was the minimum energy conformation. Interaction energy of that dimer was 14.42 kcal/mol with 3.40 angstrom separation between monomers at the B97D/cc-pVQZ level. The parallel displaced minimum energy dimer has a binding energy about 1.0 kcal/mol smaller than the rotational minimum energy geometry.
|
312 |
Multiscale Kinetic Modelling for Chemical Looping Applications: From Atomistic to ContinuumChen, Yu-Yen January 2021 (has links)
No description available.
|
313 |
Electronic characterization of molecules with application to organic light emitting diodesJansson, Emil January 2007 (has links)
The presented thesis is devoted to the field of organic light emitting diodes (OLEDs). Time-dependent Kohn-Sham density functional theory (TDDFT) is applied in order to eludicate optical properties such as fluorescence and phosphorescence for some of the most important materials. The accuracy of TDDFT is evaluated with respect to the calculated absorption and emission spectra for commonly used light emitting polymers. A continuation of this work is devoted to Polyfluorene as this polymer has proven to be very promising. In this study the chain length dependence of its singlet and triplet excited states is analyzed as well as the excited state structures. Understanding the phosphorescence mechanism of tris(2-phenylpyridine)Iridium is of importance in order to interpret the high efficiency of OLEDs containing these specimens. The mechanism is analyzed by calculating the electric transition dipole moments by means of TDDFT using quadratic response functions. As not only the optical properties are essential for effective devices, electron transfer properties are addressed. The electron transfer capability of the sulfur and nitrogen analogues of Oxadiazole is evaluated through their internal reorganization energy. / <p>QC 20101109</p>
|
314 |
<b>Materials Design using First Principles Calculations: Investigating halide perovskites and transition metal electrocatalysts</b>Jiaqi Yang (16716363) 02 August 2023 (has links)
<p>With increasing global renewable energy demands, there is a need for new materials with improved performance, lower cost, and less toxicity. One such application is photovoltaics, where halide perovskites (HaPs) represent the fastest growing market of absorbers owing to their impressive optoelectronic properties and excellent tunability from composition engineering and structural manipulation. However, the practically infinite composition-structure space of HaPs when considering cation and/or anion site mixing, octahedral distortion and rotation, and other forms of polymorphism, raise considerable challenges when comprehensively exploring their stability and optoelectronic properties. First principles calculations are powerful tools that can investigate large numbers of compounds and structures in a high-throughput fashion. </p><p>In my thesis, I performed high-throughput density functional theory (DFT) computations to generate a HaP dataset within a wide chemical space covering ~500 unique chemical compositions in the (pseudo-)cubic phase, across a 14-dimensional ionic space. This work explored both pure and alloyed compositions, with the latter simulated using the special quasi-random structures approach. Many critical properties were computed using the semi-local GGA-PBE and hybrid non-local HSE06 functionals, including decomposition and mixing energies, electronic band gap, and spectroscopic limited maximum efficiency (SLME), which is a theoretical surrogate for the likely absorption efficiency of the compound when used in a single-junction solar cell. Property screening over this dataset yielded 32 stable perovskite candidates with attractive optoelectronic properties.</p><p>Polymorphism in HaPs is investigated by simulating larger supercell alloys with different ionic ordering, generating compounds with random octahedral distortions and rotations, and optimizing various compositions in non-cubic phases such as tetragonal and orthorhombic. Linear correlation analysis is performed to gain a critical understanding of how properties are influenced by specific cations and anions, their mixing fractions, the perovskite phase, ionic clustering, and amount of strain or distortion in the lattice. Finally, trends, design rules, and predictive insights achieved from the DFT datasets are applied over a much larger set of thousands of hypothetical compounds, resulting in identification of more promising materials and understanding of the most important A-B-X combinations that yield multiple desired objectives.</p><p>Furthermore, a similar DFT workflow is applied for designing transition metal electrocatalysts. DFT simulations are performed to model Hydrogen adsorption, OH adsorption, and the water splitting reaction on Ni3N/Ni and Co2N/Co hybrid structures, to explore their likelihood in being used for Hydrogen Evolution Reaction (HER). The results reveal the excellent catalytic performance of transition metal and transition metal nitride hybrid structures.</p><p><br></p>
|
315 |
Synthesis of Polar 1,2-Dimetalloalkenes and Their Application to Organic Synthesis / 極性1, 2-ジメタロアルケンの合成およびその有機合成への利用Takahashi, Fumiya 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24438号 / 理博第4937号 / 新制||理||1705(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 若宮 淳志, 教授 畠山 琢次 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
316 |
Development of Silylsilanolates as New Silylating Reagents / 新規シリル化剤シリルシラノラートの開発Yamagishi, Hiroki 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24447号 / 理博第4946号 / 新制||理||1706(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 若宮 淳志, 教授 畠山 琢次 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
317 |
First Principles Study of the Effect of Local Bonding on Diffusion Mechanisms in AlloysParanjape, Priyanvada Madhukar 12 1900 (has links)
This work demonstrates how local, randomized tailoring of bond stiffness can affect the activation energy of diffusion in model alloys using density functional theory-based computations. This work is organized into two parts. The first part deals with the vacancy diffusion mechanism, and it compares the in–plane (IP) vs out-of-plane (OOP) diffusion paths in prototypical binary Mg-X (Ca, Y, and Gd) and ternary Mg-X (Ca, Y, and Gd)-Zn alloys. We examine how vacancy formation, migration, and solute vacancy binding energies in binary Mg-X alloys influence diffusion activation and correlated them with conventional diffusion model based solely on the solute sizes. Next, we explore how Zn addition to binary Mg-X (Ca, Y, and Gd) alloys influences the OOP activation energy barrier is discussed in terms of detailed energetic computations and bond characterization in the present work. Our results indicate that Zn addition further enhances the OOP activation energy barrier compared to corresponding activation energies in Mg binaries. This work concludes that engineering stiffer directional bonds via micro-alloying additions in Mg is a promising route to dramatically improve their high temperature creep response.
The second part of my work investigates the effects of Si, P, and S solutes on H interstitial diffusion mechanism in Ni. It examines how H interacts with vacancy, impurity atom, and vacancy-impurity atom defect pair by performing binding energy calculations. Results indicate that vacancy-impurity atom defect pair strongly traps the H atom compared to isolated defects. Finally, the effect of impurities on activation energy barrier of H diffusing in Ni is discussed by correlating migration energetics with bonding characteristics by performing charge density and electron density calculations. Our study validates experimental hypothesis of Berkowitz and Kane which postulates that P enhances the H diffusion in Ni. The present work also shows that H diffusion speeds up in Ni in the presence of Si and S solutes. In conclusion, we show that micro-alloying additions induce local lattice level pockets with covalent character, which substantially enhances the local bond stiffness. This will increase activation energy for vacancy diffusion mechanism while it reduces activation energy for interstitial H diffusion.
|
318 |
Computational Prediction Of Efficiency Parameters In Organic Solar Cells : From Polymer Donors And Non Fullerene Acceptors / Beräkningsförutsägelse av effektivitets parametrar i organiska solceller : Från polymeriska donatorer och icke fullerenska acceptorerKarlsson, Martin January 2022 (has links)
The field of organic solar cells is getting more and more attention as the need forrenewable energy sources rises. When developing new materials for organic solar cellssynthesizing the new materials, is a time consuming and costly process. Therefore acomputational model for predicting how effective a new material, is without the needfor synthesizing. In this thesis an attempt to create a model for predicting open circuitvoltage in organic solar cells. Descriptors was calculated using B3LYP/6-31G hybridfunctionals. By creating a data set of donor and acceptor molecules with known andunknown open circuit voltage, and empirically trying to find a correlation between thedata sets that can be extrapolated and modeled. The results of this thesis did notmeet the goal of creating a model for predicting the open circuit voltage. Where nosignificant correlation was found, due a to small sample size.
|
319 |
Transition Metal Mediated C-o Bond Cleavage: From Co2 Activation to Lignin DegradationLiu, Cong 08 1900 (has links)
CO2 activation and conversion mediated by transition metal (TM) catalysts were investigated. Homogeneous catalysis of the reverse water gas shift reaction CO2+H2→H2O+CO was studied as a means to reduce CO2. β-diketiminato metal models L'MI ( L' =C3N2H5-; M = first-row TMs) were considered as potential catalysts. The thermodynamics of prototypical reaction pathways were simulated using B3LYP/aug-cc-pVTZ. Results show that middle series metal complexes result in more thermodynamically favorable properties; therefore, more detailed thermodynamic and kinetic studies were carried out for Mn, Fe, and Co complexes. On the other hand, heterogeneous catalysis of the reduction of CO2 to CO was carried out on Fe, Co, Ni, and Cu surfaces, using the PBE functional. Reaction barriers were calculated using the climbing image nudged elastic band method. Late 3d and 4d transition metal ion (Fe, Co, Ni, Cu, Ru, Rh, Pd, and Ag) mediated activation of dimethyl ether was studied to investigate the intrinsic catalytic properties of metals for C-O bond cleavage. A set of density functional theory (DFT) methods (BLYP, B3LYP, M06, M06-L, B97-1, B97-D, TPSS, and PBE) with aug-cc-pVTZ basis sets was calibrated with CCSD(T)/CBS calculations on reaction energies and barriers.
|
320 |
Computational Quantum Chemistry Studies of the Stabilities of Radical Adducts Formed During the Oxidation of Melatonin DerivativesHorne, James 01 December 2023 (has links) (PDF)
Melatonin is a natural antioxidant that has been investigated for properties as a potential spin trap to identify short-lived free radicals. Computational quantum chemistry studies have been performed for the oxidation of melatonin to N1-acetyl-N2-formyl-5-methoxykynuramine. This research focused on modification of melatonin into derivatives and analyzing the change in total molecular energy from melatonin to its oxidation product, as well as the corresponding derivatives. Each of the molecular geometries were optimized at the DFT/B3LYP/6-31G(d), DFT/B3LYP/cc-pVXZ (X = D, T), HF/6-31G(d), HF/cc-PVXZ (X = D, T), MP2/6-31G(d), and MP2/cc-PVXZ (X = D, T) levels of theory. Single point energies were extrapolated to the complete basis set. The results demonstrated that some electron-withdrawing groups increased the total energy of the system. The electron-withdrawing functional group which lowered the total energy of the system was a peroxyl functional group, and this is believed to be due to overlapping constructive interference between molecular orbitals.
|
Page generated in 0.0321 seconds