• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da cinética plasmática do colesterol livre e esterificado em pacientes diabéticos tipo 2 com ou sem doença coronariana diagnosticada / Plasma kinetics of study of the free cholesterol and cholesteryl ester in type 2 diabetes mellitus patients with and without coronary artery disease

Oliveira, Carolina Piras de 20 January 2010 (has links)
INTRODUÇÃO:. A dislipidemia diabética é um dos principais fatores de risco para doença arterial coronária (DAC) O uso de uma nanoemulsão LDL-símile para avaliar clearance do éster de colesterol(EC) e colesterol livre(CL) do intravascular mostrou uma remoção acentuada do CL e um maior depósito em vasos sanguíneos de indivíduos com DAC avançada. OBJETIVOS: Identificar em DM2 a cinética plasmática do CL e EC; se há diferença na cinética de CL e EC em DM2 assintomáticos para DAC com e sem aterosclerose subclínica. MÉTODOS: Estudou-se 12 DM2 e 09 controles pareados para idade e sexo. A aterosclerose subclínca foi avaliada pela presença de Calcificação na artéria coronária (CAC). A Nanoemulsão artificial LDLsímile com dupla marcação radioativa 14C-EC, 3H-CL foi utilizada para o estudo cinético do colesterol, sendo injetada nos participantes e amostras de sangue foram coletadas durante 24 horas para mensuração da radioatividade. Remoção dos lípides da circulação foi calculada por análise compartimental. Mediu-se a taxa de esterificação do 3H-CL no plasma e avaliou-se a capacidade in vitro da HDL de receber lípides a partir das LDL-símile. RESULTADOS: Os diabéticos tiveram IMC, CA e CA/CQ maior que os controles, respectivamente: 31,9 ± 4,6 vs. 27,1± 2,4, p<0,05; 104,9 ± 9,8 vs. 94,2 ± 7,3, p<0,05; 0,98 ± 0,09 vs.0,89 ± 0,06, p<0,01. A glicemia de jejum (171 ± 96 vs. 83 ± 7,5 mg/dl, p <0,05) e hemoglobina glicada (8,9 ± 2,1 vs. 5,6 ± 0,4%, p<0,05) também foram maiores no DM2. A concentração de colesterol total, LDL, HDL, Triglicérides e apolipoproteínas A1,B e E não diferiu entre os grupos. A Taxa fracional de remoção (TFR)14C-EC foi 22% maior DM2 que nos controles (0,07 ± 0,02 vs. 0,05 ± 0,01 h-1, p<0.01). A TFR3H- CL foi semelhante entre os dois grupos, bem como a esterificação. A presença de CAC no grupo DM2 não alterou a remoção de EC e CL nesses pacientes. In vitro a capacidade da HDL em receber EC (4,2 ± 0,8vs. 3,5 ± 0,6 %, p=0,03) e TG (6,8 ± 1,6 vs. 5,0 ± 1,1, p=0.03) foi maior nos DM2. CONCLUSÕES: A remoção acelerada do 14C-EC na população DM2 e a remoção semelhante do 3H-CL quando comparado com grupo controle, pode sinalizar alterações na gênese da dislipidemia diabética. O fato dos DM2 com CAC assintomática não apresentam alterações na remoção de colesterol livre sinaliza uma provável relação do CL com a instabilidade da placa aterosclerótica. / INTRODUTION: The diabetic dyslipidemia is one of the most important risk factor in the development of coronary artery disease (CAD). The LDL-like nanoemulsion is being used to study the clearance of cholesteryl ester(CE) and free cholesterol(FC) from intravascular in patients with advanced CAD and it was shown a higher removal of FC and higher deposit in vases. OBJECTIVE: The aim of this study is to analyze the plasma kinetics of FC and CE in Type 2 Diabetes Mellitus (T2DM); and identify if there are any differences in the removal of FC in the presence of subclinical atherosclerosis in asymptomatic patients with T2DM. METHODS: It was studied 12 T2DM and 09 controls paired by age and gender. The LDL-like nanoemulsion labeled with radioactive: 14C- cholesterol ester (CE), 3H-cholesterol free (CF) was used on plasma kinetics. The nanoemulsion was injected intravenously in all participants and blood sample was collected over 24 hours for radioactivity measurement. The intravascular lipid removal was calculated through compartmental analysis. The intravascular esterification of FC contained in the nanoemulsion was calculated. The ability of HDL to received lipids from LDL-simile were observed in vitro essays. Coronary Calcium Score was detected to identify subclinical atherosclerosis. RESULTS: T2DM patients had a bigger BMI, waist and waist/hip than control, respectively 31.9 ± 4.6 vs. 27.1± 2.4, p<0.05; 104.9 ± 9.8 vs. 94.2±7.3, p<0.05; 0.98± 0.09 vs. 0.89 ± 0.06,p<0.01. Fasting glycemia (171 ± 96 vs. 83 ± 7.5 mg/dl, p <0.05) and glycated hemoglobin( 8.9 ± 2.1 vs. 5.6 ± 0.4%,p<0.05) was higher in T2DM, and there was no differences in the concentration of Total cholesterol, HDL, LDL, Triglycerides and apolipoproteins A1, B and E concentrations. The Fractional Clearance rate (FCR) 14C CE in T2DM was 22% bigger than control ( 0.07 ± 0.02 vs. 0.05± 0.01 h-1, p<0.01). FCR 3H-CF was similar between the groups. The CAC in T2DM did not show differents TFR in CE and FC in these group. In Both groups there was no statistical difference in FC esterification rate. The HDL ability to received CE (4.2 ± 0,8vs. 3.5 ± 0,6 %, p=0,03) and TG (6.8 ± 1.6 vs. 5.0 ± 1.1, p=0.03) from LDL-like nanoemulsion was higher in T2DM. CONCLUSIONS: The higher removal of 14C-CE and similar removal of FC in T2DM can be related to the genese of the diabetic dyslipidemia. The similar removal of FC between the control group and T2DM asymptomatic CAD, with and without subclinical atherosclerosis, could possibly signalize to the relation of FC and the atherosclerotic plaque stability.
2

Estudo da cinética plasmática do colesterol livre e esterificado em pacientes diabéticos tipo 2 com ou sem doença coronariana diagnosticada / Plasma kinetics of study of the free cholesterol and cholesteryl ester in type 2 diabetes mellitus patients with and without coronary artery disease

Carolina Piras de Oliveira 20 January 2010 (has links)
INTRODUÇÃO:. A dislipidemia diabética é um dos principais fatores de risco para doença arterial coronária (DAC) O uso de uma nanoemulsão LDL-símile para avaliar clearance do éster de colesterol(EC) e colesterol livre(CL) do intravascular mostrou uma remoção acentuada do CL e um maior depósito em vasos sanguíneos de indivíduos com DAC avançada. OBJETIVOS: Identificar em DM2 a cinética plasmática do CL e EC; se há diferença na cinética de CL e EC em DM2 assintomáticos para DAC com e sem aterosclerose subclínica. MÉTODOS: Estudou-se 12 DM2 e 09 controles pareados para idade e sexo. A aterosclerose subclínca foi avaliada pela presença de Calcificação na artéria coronária (CAC). A Nanoemulsão artificial LDLsímile com dupla marcação radioativa 14C-EC, 3H-CL foi utilizada para o estudo cinético do colesterol, sendo injetada nos participantes e amostras de sangue foram coletadas durante 24 horas para mensuração da radioatividade. Remoção dos lípides da circulação foi calculada por análise compartimental. Mediu-se a taxa de esterificação do 3H-CL no plasma e avaliou-se a capacidade in vitro da HDL de receber lípides a partir das LDL-símile. RESULTADOS: Os diabéticos tiveram IMC, CA e CA/CQ maior que os controles, respectivamente: 31,9 ± 4,6 vs. 27,1± 2,4, p<0,05; 104,9 ± 9,8 vs. 94,2 ± 7,3, p<0,05; 0,98 ± 0,09 vs.0,89 ± 0,06, p<0,01. A glicemia de jejum (171 ± 96 vs. 83 ± 7,5 mg/dl, p <0,05) e hemoglobina glicada (8,9 ± 2,1 vs. 5,6 ± 0,4%, p<0,05) também foram maiores no DM2. A concentração de colesterol total, LDL, HDL, Triglicérides e apolipoproteínas A1,B e E não diferiu entre os grupos. A Taxa fracional de remoção (TFR)14C-EC foi 22% maior DM2 que nos controles (0,07 ± 0,02 vs. 0,05 ± 0,01 h-1, p<0.01). A TFR3H- CL foi semelhante entre os dois grupos, bem como a esterificação. A presença de CAC no grupo DM2 não alterou a remoção de EC e CL nesses pacientes. In vitro a capacidade da HDL em receber EC (4,2 ± 0,8vs. 3,5 ± 0,6 %, p=0,03) e TG (6,8 ± 1,6 vs. 5,0 ± 1,1, p=0.03) foi maior nos DM2. CONCLUSÕES: A remoção acelerada do 14C-EC na população DM2 e a remoção semelhante do 3H-CL quando comparado com grupo controle, pode sinalizar alterações na gênese da dislipidemia diabética. O fato dos DM2 com CAC assintomática não apresentam alterações na remoção de colesterol livre sinaliza uma provável relação do CL com a instabilidade da placa aterosclerótica. / INTRODUTION: The diabetic dyslipidemia is one of the most important risk factor in the development of coronary artery disease (CAD). The LDL-like nanoemulsion is being used to study the clearance of cholesteryl ester(CE) and free cholesterol(FC) from intravascular in patients with advanced CAD and it was shown a higher removal of FC and higher deposit in vases. OBJECTIVE: The aim of this study is to analyze the plasma kinetics of FC and CE in Type 2 Diabetes Mellitus (T2DM); and identify if there are any differences in the removal of FC in the presence of subclinical atherosclerosis in asymptomatic patients with T2DM. METHODS: It was studied 12 T2DM and 09 controls paired by age and gender. The LDL-like nanoemulsion labeled with radioactive: 14C- cholesterol ester (CE), 3H-cholesterol free (CF) was used on plasma kinetics. The nanoemulsion was injected intravenously in all participants and blood sample was collected over 24 hours for radioactivity measurement. The intravascular lipid removal was calculated through compartmental analysis. The intravascular esterification of FC contained in the nanoemulsion was calculated. The ability of HDL to received lipids from LDL-simile were observed in vitro essays. Coronary Calcium Score was detected to identify subclinical atherosclerosis. RESULTS: T2DM patients had a bigger BMI, waist and waist/hip than control, respectively 31.9 ± 4.6 vs. 27.1± 2.4, p<0.05; 104.9 ± 9.8 vs. 94.2±7.3, p<0.05; 0.98± 0.09 vs. 0.89 ± 0.06,p<0.01. Fasting glycemia (171 ± 96 vs. 83 ± 7.5 mg/dl, p <0.05) and glycated hemoglobin( 8.9 ± 2.1 vs. 5.6 ± 0.4%,p<0.05) was higher in T2DM, and there was no differences in the concentration of Total cholesterol, HDL, LDL, Triglycerides and apolipoproteins A1, B and E concentrations. The Fractional Clearance rate (FCR) 14C CE in T2DM was 22% bigger than control ( 0.07 ± 0.02 vs. 0.05± 0.01 h-1, p<0.01). FCR 3H-CF was similar between the groups. The CAC in T2DM did not show differents TFR in CE and FC in these group. In Both groups there was no statistical difference in FC esterification rate. The HDL ability to received CE (4.2 ± 0,8vs. 3.5 ± 0,6 %, p=0,03) and TG (6.8 ± 1.6 vs. 5.0 ± 1.1, p=0.03) from LDL-like nanoemulsion was higher in T2DM. CONCLUSIONS: The higher removal of 14C-CE and similar removal of FC in T2DM can be related to the genese of the diabetic dyslipidemia. The similar removal of FC between the control group and T2DM asymptomatic CAD, with and without subclinical atherosclerosis, could possibly signalize to the relation of FC and the atherosclerotic plaque stability.
3

Intestin et défauts métaboliques dans la résistance à l'insuline

Grenier, Émilie 12 1900 (has links)
En lien avec l’augmentation constante de l’obésité, de plus en plus de personnes sont atteintes de résistance à l’insuline ou de diabète de type 2. Ce projet doctoral s’est surtout intéressé à l’une des conséquences majeures des pathologies cardiométaboliques, soit la dyslipidémie diabétique. À cet égard, les gens présentant une résistance à l’insuline ou un diabète de type 2 sont plus à risque de développer des perturbations lipidiques caractérisées essentiellement par des taux élevés de triglycérides et de LDL-cholestérol ainsi que de concentrations restreintes en HDL-cholestérol dans la circulation. Les risques de maladies cardiovasculaires sont ainsi plus élevés chez ces patients. Classiquement, trois organes sont connus pour développer l’insulino-résistance : le muscle, le tissu adipeux et le foie. Néanmoins, certaines évidences scientifiques commencent également à pointer du doigt l’intestin, un organe critique dans la régulation du métabolisme des lipides postprandiaux, et qui pourrait, conséquemment, avoir un impact important dans l’apparition de la dyslipidémie diabétique. De façon très intéressante, des peptides produits par l’intestin, notamment le GLP-1 (glucagon-like peptide-1), ont déjà démontré leur potentiel thérapeutique quant à l’amélioration du statut diabétique et leur rôle dans le métabolisme intestinal lipoprotéinique. Une autre évidence est apportée par la chirurgie bariatrique qui a un effet positif, durable et radical sur la perte pondérale, le contrôle métabolique et la réduction des comorbidités du diabète de type 2, suite à la dérivation bilio-intestinale. Les objectifs centraux du présent programme scientifique consistent donc à déterminer le rôle de l’intestin dans (i) l’homéostasie lipidique/lipoprotéinique en réponse à des concentrations élevées de glucose (à l’instar du diabète) et à des peptides gastro-intestinaux tels que le PYY (peptide YY); (ii) la coordination du métabolisme en disposant de l’AMPK (AMP-activated protein kinase) comme senseur incontournable permettant l’ajustement précis des besoins et disponibilités énergétiques cellulaires; et (iii) l’ajustement de sa capacité d’absorption des graisses alimentaires en fonction du gain ou de la perte de sa sensibilité à l’insuline démontrée dans les spécimens intestinaux humains prélevés durant la chirurgie bariatrique. Dans le but de confirmer le rôle de l’intestin dans la dyslipidémie diabétique, nous avons tout d’abord utilisé le modèle cellulaire intestinal Caco-2/15. Ces cellules ont permis de démontrer qu’en présence de hautes concentrations de glucose en basolatéral, telle qu’en condition diabétique, l’intestin absorbe davantage de cholestérol provenant de la lumière intestinale par l’intermédiaire du transporteur NPC1L1 (Niemann Pick C1-like 1). L’utilisation de l’ezetimibe, un inhibiteur du NPC1L1, a permis de contrecarrer cette augmentation de l’expression de NPC1L1 tout comme l’élévation de l’absorption du cholestérol, prouvant ainsi que le NPC1L1 est bel et bien responsable de cet effet. D’autre part, des travaux antérieurs avaient identifié certains indices quant à un rôle potentiel du peptide intestinal PYY au niveau du métabolisme des lipides intestinaux. Toutefois, aucune étude n’avait encore traité cet aspect systématiquement. Pour établir définitivement l’aptitude du PYY à moduler le transport et le métabolisme lipidique dans l’intestin, nous avons utilisé les cellules Caco-2/15. Notre étude a permis de constater que le PYY incubé du côté apical est capable de réduire significativement l’absorption du cholestérol et le transporteur NPC1L1. Puisque le rôle de l'AMPK dans l'intestin demeure inexploré, il est important non seulement de définir sa structure moléculaire, sa régulation et sa fonction dans le métabolisme des lipides, mais aussi d'examiner l'impact de l’insulino-résistance et du diabète de type 2 (DT2) sur son statut et son mode d’action gastro-intestinal. En employant les cellules Caco-2/15, nous avons été capables de montrer (i) la présence de toutes les sous-unités AMPK (α1/α2/β1/β2/γ1/γ2/γ3) avec une différence marquée dans leur abondance et une prédominance de l’AMPKα1 et la prévalence de l’hétérotrimère α1/β2/γ1; (ii) l’activation de l’AMPK par la metformine et l’AICAR, résultant ainsi en une phosphorylation accrue de l’enzyme acétylCoA carboxylase (ACC) et sans influence sur l'HMG-CoA réductase; (iii) la modulation négative de l’AMPK par le composé C et des concentrations de glucose élevées avec des répercussions sur la phosphorylation de l’ACC. D’autre part, l’administration de metformine au Psammomys obesus, un modèle animal de diabète et de syndrome métabolique, a conduit à (i) une régulation positive de l’AMPK intestinale (phosphorylation de l’AMPKα-Thr172); (ii) la réduction de l'activité ACC; (iii) l’augmentation de l’expression génique et protéique de CPT1, supportant une stimulation de la β-oxydation; (iv) une tendance à la hausse de la sensibilité à l'insuline représentée par l’induction de la phosphorylation d'Akt et l’inactivation de la phosphorylation de p38; et (v) l’abaissement de la formation des chylomicrons ce qui conduit à la diminution de la dyslipidémie diabétique. Ces données suggèrent que l'AMPK remplit des fonctions clés dans les processus métaboliques de l'intestin grêle. La preuve flagrante de l’implication de l’intestin dans les événements cardiométaboliques a été obtenue par l’examen des spécimens intestinaux obtenus de sujets obèses, suite à une chirurgie bariatrique. L’exploration intestinale nous a permis de constater chez ceux avec un indice HOMA élevé (marqueur d’insulinorésistance) (i) des défauts de signalisation de l'insuline comme en témoigne la phosphorylation réduite d'Akt et la phosphorylation élevée de p38 MAPK; (ii) la présence du stress oxydatif et de marqueurs de l'inflammation; (iii) la stimulation de la lipogenèse et de la production des lipoprotéines riches en triglycérides avec l’implication des protéines clés FABP, MTP et apo B-48. En conclusion, l'intestin grêle peut être classé comme un tissu insulino-sensible et répondant à plusieurs stimuli nutritionnels et hormonaux. Son dérèglement peut être déclenché par le stress oxydatif et l'inflammation, ce qui conduit à l'amplification de la lipogenèse et la synthèse des lipoprotéines, contribuant ainsi à la dyslipidémie athérogène chez les patients atteints du syndrome métabolique et de diabète de type 2. / In relation with the constant increase in obesity, more and more people suffer from insulin resistance and type 2 diabetes (DT2). This doctoral research program especially emphasizes lipid disorders, one of the major consequences of cardiometabolic diseases. In this respect, people with insulin resistance or DT2 are at higher risk of developing lipid disturbances characterized mainly by high levels of triglycerides and LDL-cholesterol concentrations and HDL cholesterol in the blood circulation. The risks of cardiovascular disease are higher in these patients. Classically, three organs are known to develop insulin resistance: muscle, adipose tissue and liver. Nevertheless, important studies begin to point out the small intestine as a major organ in the regulation of postprandial lipids, which may have a significant impact on the development of diabetic dyslipidemia. In addition, the intestine produces peptides, including GLP-1 (glucagon-like peptide-1), that have already demonstrated their therapeutic potential with regard to diabetic status and intestinal lipoprotein metabolism. Further evidence is also is provided by the advent of bariatric surgery that has a positive effect on radical and sustainable weight loss, metabolic control and reduction of comorbidities of DT2, following biliopancreatic diversion. The central objectives of this scientific program are therefore to determine the role of the intestine in (i) lipid/ lipoprotein homeostasis in response to high concentrations of glucose (mimicking diabetes) and to gastrointestinal peptides such as PYY; (ii) the coordination of metabolism by involving AMPK (AMP-activated protein kinase) as an essential sensor for fine tuning of cellular energy needs; and (iii) adjusting absorption capacity of dietary fat in the gain or loss of insulin sensitivity demonstrated in intestinal specimens collected during bariatric surgery. In order to confirm the role of the intestine in diabetic dyslipidemia, we first used the intestinal Caco-2/15 cell model. The use of this epithelial cell line has shown a marked stimulation of cholesterol uptake via the transporter NPC1L1 (Niemann-Pick C1-like 1) in the presence of high glucose concentrations (as is the case in diabetic conditions) in basolateral compartment (compared to apical). The use of ezetimibe, an inhibitor of NPC1L1, helped to counteract this elevation of cholesterol absorption, thus proving that NPC1L1 is indeed behind this effect. If previous reports have identified some clues as to the potential role of intestinal PYY (peptide YY) in lipid metabolism disorders, no study has yet addressed this issue systematically. To definitively establish the ability of PYY to modulate lipid transport and metabolism in the intestine, we have used Caco-2/15 cells. Our recent investigation has shown that PYY (administered in the apical compartment) is able to significantly reduce cholesterol absorption via NPC1L1 transporter. Since the role of AMPK in the intestine remains unexplored, it is important to define not only its molecular structure, regulation and function in lipid metabolism, but also its impact on insulin resistance and T2D on its status and mode of action in the gastrointestinal tract. Using Caco-2/15 cells, we have been able to show (i) the presence of all AMPK subunits (α1/α2/β1/β2/γ1/γ2/γ3) with a marked difference in their abundance, but with a predominance of AMPKα1 and the prevalence of α1/β2/γ1 heterotrimer; (ii) the activation of AMPK by metformin and AICAR, resulting in increased phosphorylation of the downstream target acetylCoA carboxylases (ACC) without no influence on HMG-CoA reductase; (iii) the negative modulation of AMPK by compound C and glucose concentrations with high impact on ACC phosphorylation. On the other hand, administration of metformin to Psammomys obesus with insulin resistance and T2D led to (a) an upregulation of intestinal AMPK signaling pathway essentially typified by ascending AMPKα-Thr172 phosphorylation; (b) a reduction in ACC activity; (c) an elevation in the gene and protein expression of CPT1, supporting a stimulation of β-oxidation; (d) a trend of increase in insulin sensitivity portrayed by augmentation of Akt and GSK3β phosphorylation; (e) an inactivation of the stress-responsive p38-MAPK and /ERK1/2 exemplified by their phosphorylation lessening; and (f) a decrease in diabetic dyslipidemia following lowering of intracellular events that govern lipoprotein assembly. Therefore these data suggest that AMPK fulfills key functions in metabolic processes in the small intestine. The clear evidence for the involvement of the gut in cardiometabolic events has been obtained through the scrutiny of intestinal specimens obtained from obese subjects after bariatric surgery. Intestine of insulin-resistant subjects shows defects in insulin signaling as demonstrated by reduced Akt phosphorylation but increased p38 MAPK phosphorylation. These defects were accompanied with increased oxidative stress and inflammation markers in intestine of insulin-resistant subjects. Enhanced de novo lipogenesis rate and apo B-48 biogenesis along with increased triglyceride-rich lipoprotein production was also observed in the intestine of insulin-resistant subjects. Concomitantly, fatty acid binding proteins (FABP) and microsomal transfer protein (MTP) expression was increased in the intestine of insulin-resistant subjects. In conclusion, the small intestine may be classified as an insulin-sensitive tissue. Its deregulation, possibly triggered by oxidative stress and inflammation, may lead to amplification of lipogenesis and lipoprotein synthesis and may therefore represent a key mechanism for atherogenic dyslipidemia in patients with metabolic syndrome and T2D.
4

Intestin et défauts métaboliques dans la résistance à l'insuline

Grenier, Émilie 12 1900 (has links)
En lien avec l’augmentation constante de l’obésité, de plus en plus de personnes sont atteintes de résistance à l’insuline ou de diabète de type 2. Ce projet doctoral s’est surtout intéressé à l’une des conséquences majeures des pathologies cardiométaboliques, soit la dyslipidémie diabétique. À cet égard, les gens présentant une résistance à l’insuline ou un diabète de type 2 sont plus à risque de développer des perturbations lipidiques caractérisées essentiellement par des taux élevés de triglycérides et de LDL-cholestérol ainsi que de concentrations restreintes en HDL-cholestérol dans la circulation. Les risques de maladies cardiovasculaires sont ainsi plus élevés chez ces patients. Classiquement, trois organes sont connus pour développer l’insulino-résistance : le muscle, le tissu adipeux et le foie. Néanmoins, certaines évidences scientifiques commencent également à pointer du doigt l’intestin, un organe critique dans la régulation du métabolisme des lipides postprandiaux, et qui pourrait, conséquemment, avoir un impact important dans l’apparition de la dyslipidémie diabétique. De façon très intéressante, des peptides produits par l’intestin, notamment le GLP-1 (glucagon-like peptide-1), ont déjà démontré leur potentiel thérapeutique quant à l’amélioration du statut diabétique et leur rôle dans le métabolisme intestinal lipoprotéinique. Une autre évidence est apportée par la chirurgie bariatrique qui a un effet positif, durable et radical sur la perte pondérale, le contrôle métabolique et la réduction des comorbidités du diabète de type 2, suite à la dérivation bilio-intestinale. Les objectifs centraux du présent programme scientifique consistent donc à déterminer le rôle de l’intestin dans (i) l’homéostasie lipidique/lipoprotéinique en réponse à des concentrations élevées de glucose (à l’instar du diabète) et à des peptides gastro-intestinaux tels que le PYY (peptide YY); (ii) la coordination du métabolisme en disposant de l’AMPK (AMP-activated protein kinase) comme senseur incontournable permettant l’ajustement précis des besoins et disponibilités énergétiques cellulaires; et (iii) l’ajustement de sa capacité d’absorption des graisses alimentaires en fonction du gain ou de la perte de sa sensibilité à l’insuline démontrée dans les spécimens intestinaux humains prélevés durant la chirurgie bariatrique. Dans le but de confirmer le rôle de l’intestin dans la dyslipidémie diabétique, nous avons tout d’abord utilisé le modèle cellulaire intestinal Caco-2/15. Ces cellules ont permis de démontrer qu’en présence de hautes concentrations de glucose en basolatéral, telle qu’en condition diabétique, l’intestin absorbe davantage de cholestérol provenant de la lumière intestinale par l’intermédiaire du transporteur NPC1L1 (Niemann Pick C1-like 1). L’utilisation de l’ezetimibe, un inhibiteur du NPC1L1, a permis de contrecarrer cette augmentation de l’expression de NPC1L1 tout comme l’élévation de l’absorption du cholestérol, prouvant ainsi que le NPC1L1 est bel et bien responsable de cet effet. D’autre part, des travaux antérieurs avaient identifié certains indices quant à un rôle potentiel du peptide intestinal PYY au niveau du métabolisme des lipides intestinaux. Toutefois, aucune étude n’avait encore traité cet aspect systématiquement. Pour établir définitivement l’aptitude du PYY à moduler le transport et le métabolisme lipidique dans l’intestin, nous avons utilisé les cellules Caco-2/15. Notre étude a permis de constater que le PYY incubé du côté apical est capable de réduire significativement l’absorption du cholestérol et le transporteur NPC1L1. Puisque le rôle de l'AMPK dans l'intestin demeure inexploré, il est important non seulement de définir sa structure moléculaire, sa régulation et sa fonction dans le métabolisme des lipides, mais aussi d'examiner l'impact de l’insulino-résistance et du diabète de type 2 (DT2) sur son statut et son mode d’action gastro-intestinal. En employant les cellules Caco-2/15, nous avons été capables de montrer (i) la présence de toutes les sous-unités AMPK (α1/α2/β1/β2/γ1/γ2/γ3) avec une différence marquée dans leur abondance et une prédominance de l’AMPKα1 et la prévalence de l’hétérotrimère α1/β2/γ1; (ii) l’activation de l’AMPK par la metformine et l’AICAR, résultant ainsi en une phosphorylation accrue de l’enzyme acétylCoA carboxylase (ACC) et sans influence sur l'HMG-CoA réductase; (iii) la modulation négative de l’AMPK par le composé C et des concentrations de glucose élevées avec des répercussions sur la phosphorylation de l’ACC. D’autre part, l’administration de metformine au Psammomys obesus, un modèle animal de diabète et de syndrome métabolique, a conduit à (i) une régulation positive de l’AMPK intestinale (phosphorylation de l’AMPKα-Thr172); (ii) la réduction de l'activité ACC; (iii) l’augmentation de l’expression génique et protéique de CPT1, supportant une stimulation de la β-oxydation; (iv) une tendance à la hausse de la sensibilité à l'insuline représentée par l’induction de la phosphorylation d'Akt et l’inactivation de la phosphorylation de p38; et (v) l’abaissement de la formation des chylomicrons ce qui conduit à la diminution de la dyslipidémie diabétique. Ces données suggèrent que l'AMPK remplit des fonctions clés dans les processus métaboliques de l'intestin grêle. La preuve flagrante de l’implication de l’intestin dans les événements cardiométaboliques a été obtenue par l’examen des spécimens intestinaux obtenus de sujets obèses, suite à une chirurgie bariatrique. L’exploration intestinale nous a permis de constater chez ceux avec un indice HOMA élevé (marqueur d’insulinorésistance) (i) des défauts de signalisation de l'insuline comme en témoigne la phosphorylation réduite d'Akt et la phosphorylation élevée de p38 MAPK; (ii) la présence du stress oxydatif et de marqueurs de l'inflammation; (iii) la stimulation de la lipogenèse et de la production des lipoprotéines riches en triglycérides avec l’implication des protéines clés FABP, MTP et apo B-48. En conclusion, l'intestin grêle peut être classé comme un tissu insulino-sensible et répondant à plusieurs stimuli nutritionnels et hormonaux. Son dérèglement peut être déclenché par le stress oxydatif et l'inflammation, ce qui conduit à l'amplification de la lipogenèse et la synthèse des lipoprotéines, contribuant ainsi à la dyslipidémie athérogène chez les patients atteints du syndrome métabolique et de diabète de type 2. / In relation with the constant increase in obesity, more and more people suffer from insulin resistance and type 2 diabetes (DT2). This doctoral research program especially emphasizes lipid disorders, one of the major consequences of cardiometabolic diseases. In this respect, people with insulin resistance or DT2 are at higher risk of developing lipid disturbances characterized mainly by high levels of triglycerides and LDL-cholesterol concentrations and HDL cholesterol in the blood circulation. The risks of cardiovascular disease are higher in these patients. Classically, three organs are known to develop insulin resistance: muscle, adipose tissue and liver. Nevertheless, important studies begin to point out the small intestine as a major organ in the regulation of postprandial lipids, which may have a significant impact on the development of diabetic dyslipidemia. In addition, the intestine produces peptides, including GLP-1 (glucagon-like peptide-1), that have already demonstrated their therapeutic potential with regard to diabetic status and intestinal lipoprotein metabolism. Further evidence is also is provided by the advent of bariatric surgery that has a positive effect on radical and sustainable weight loss, metabolic control and reduction of comorbidities of DT2, following biliopancreatic diversion. The central objectives of this scientific program are therefore to determine the role of the intestine in (i) lipid/ lipoprotein homeostasis in response to high concentrations of glucose (mimicking diabetes) and to gastrointestinal peptides such as PYY; (ii) the coordination of metabolism by involving AMPK (AMP-activated protein kinase) as an essential sensor for fine tuning of cellular energy needs; and (iii) adjusting absorption capacity of dietary fat in the gain or loss of insulin sensitivity demonstrated in intestinal specimens collected during bariatric surgery. In order to confirm the role of the intestine in diabetic dyslipidemia, we first used the intestinal Caco-2/15 cell model. The use of this epithelial cell line has shown a marked stimulation of cholesterol uptake via the transporter NPC1L1 (Niemann-Pick C1-like 1) in the presence of high glucose concentrations (as is the case in diabetic conditions) in basolateral compartment (compared to apical). The use of ezetimibe, an inhibitor of NPC1L1, helped to counteract this elevation of cholesterol absorption, thus proving that NPC1L1 is indeed behind this effect. If previous reports have identified some clues as to the potential role of intestinal PYY (peptide YY) in lipid metabolism disorders, no study has yet addressed this issue systematically. To definitively establish the ability of PYY to modulate lipid transport and metabolism in the intestine, we have used Caco-2/15 cells. Our recent investigation has shown that PYY (administered in the apical compartment) is able to significantly reduce cholesterol absorption via NPC1L1 transporter. Since the role of AMPK in the intestine remains unexplored, it is important to define not only its molecular structure, regulation and function in lipid metabolism, but also its impact on insulin resistance and T2D on its status and mode of action in the gastrointestinal tract. Using Caco-2/15 cells, we have been able to show (i) the presence of all AMPK subunits (α1/α2/β1/β2/γ1/γ2/γ3) with a marked difference in their abundance, but with a predominance of AMPKα1 and the prevalence of α1/β2/γ1 heterotrimer; (ii) the activation of AMPK by metformin and AICAR, resulting in increased phosphorylation of the downstream target acetylCoA carboxylases (ACC) without no influence on HMG-CoA reductase; (iii) the negative modulation of AMPK by compound C and glucose concentrations with high impact on ACC phosphorylation. On the other hand, administration of metformin to Psammomys obesus with insulin resistance and T2D led to (a) an upregulation of intestinal AMPK signaling pathway essentially typified by ascending AMPKα-Thr172 phosphorylation; (b) a reduction in ACC activity; (c) an elevation in the gene and protein expression of CPT1, supporting a stimulation of β-oxidation; (d) a trend of increase in insulin sensitivity portrayed by augmentation of Akt and GSK3β phosphorylation; (e) an inactivation of the stress-responsive p38-MAPK and /ERK1/2 exemplified by their phosphorylation lessening; and (f) a decrease in diabetic dyslipidemia following lowering of intracellular events that govern lipoprotein assembly. Therefore these data suggest that AMPK fulfills key functions in metabolic processes in the small intestine. The clear evidence for the involvement of the gut in cardiometabolic events has been obtained through the scrutiny of intestinal specimens obtained from obese subjects after bariatric surgery. Intestine of insulin-resistant subjects shows defects in insulin signaling as demonstrated by reduced Akt phosphorylation but increased p38 MAPK phosphorylation. These defects were accompanied with increased oxidative stress and inflammation markers in intestine of insulin-resistant subjects. Enhanced de novo lipogenesis rate and apo B-48 biogenesis along with increased triglyceride-rich lipoprotein production was also observed in the intestine of insulin-resistant subjects. Concomitantly, fatty acid binding proteins (FABP) and microsomal transfer protein (MTP) expression was increased in the intestine of insulin-resistant subjects. In conclusion, the small intestine may be classified as an insulin-sensitive tissue. Its deregulation, possibly triggered by oxidative stress and inflammation, may lead to amplification of lipogenesis and lipoprotein synthesis and may therefore represent a key mechanism for atherogenic dyslipidemia in patients with metabolic syndrome and T2D.

Page generated in 0.0802 seconds