• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 479
  • 135
  • 70
  • 60
  • 48
  • 34
  • 18
  • 13
  • 13
  • 10
  • 8
  • 7
  • 7
  • 3
  • 3
  • Tagged with
  • 1026
  • 134
  • 124
  • 119
  • 108
  • 97
  • 95
  • 91
  • 84
  • 69
  • 63
  • 62
  • 61
  • 60
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design And Implementation Of a High-Power Fiber Amplifier For Diamond Raman Laser Pump

Ellis, Ryan 01 January 2024 (has links) (PDF)
Efficient generation of 1.5 um wavelength light has applications for ranging and remote sensing while being in the “eye safe” region of the optical spectrum. Diamond Raman lasers are excellent candidates for light sources at these wavelengths due to the excellent optical and mechanical properties of diamond as a laser material. This thesis describes the design and build of a MOPA fiber laser system in the CW regime as a pump for a Diamond Raman laser along with a design for operating it in the pulsed regime as well. The CW fiber laser was tested up to 200 W average power and characterized for each stage of the MOPA architecture. The third and final amplifier stage uses an extra large mode area(XLMA) fiber for decreasing irradiance of the signal with in the fiber and thus mitigating the unwanted nonlinear effects at the output when the system will be pulsed. Engineering designs will be presented for fiberized components that reduce the amount of passive fiber in the system overall. The process of putting end caps on the fiber facets will also be described. The multimode nature of the XLMA fiber required mode mixing elements to obtain a more uniform flat top beam profile. Characterization of the mode mixing fiber will be presented along with the output profile improvement.
72

The Effect of Average Grain Size on Polycrystalline Diamond Films

Abbott, Patrick Roland 05 1900 (has links)
The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.
73

Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips

Lim, Seong-Chu 05 1900 (has links)
The growth mechanism of chemical vapor deposition (CVD) grown homo-epitaxial diamond (110) and (111) films was studied using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM). In addition, the field emission properties of diamond coated molybdenum microtips were studied as a function of exposure to different gases.
74

VÝVOJ NÁSTROJŮ S PKD, CVD VRSTVOU A CVD POVLAKEM PRO DOKONČOVÁNÍ DĚR / DEVELOPMENT OF TOOLS WITH PCD, CVD LAYER AND CVD COATING FOR BORE FINISHING

Ćmiel, Milan January 2009 (has links)
The aim of the thesis is to design, conduct and assess an experiment seeking to look into the utility properties of recent tools manufactured by HAM-FINAL. The tools include polycrystalline diamond (PCD) and CVD diamond cutting edges. In the theoretical part, the attention is devoted to cutting materials with an emphasis on diamond materials, as well as to issues associated with the wearing of the cutting tools, requirements specified for precision of bores and tools used in the manufacture of precision bores. The paper further provides an overview of a selection of world’s leading manufacturers of PCD blanks, CVD diamond coatings, CVD diamond layers and reamers with PCD cutting edges.
75

Experimental Studies of Charge Transport in Single Crystal Diamond Devices

Majdi, Saman January 2012 (has links)
Diamond is a promising material for high-power, high-frequency and high- temperature electronics applications, where its outstanding physical properties can be fully exploited. It exhibits an extremely high bandgap, very high carrier mobilities, high breakdown field strength, and the highest thermal conductivity of any wide bandgap material. It is therefore an outstanding candidate for the fastest switching, the highest power density, and the most efficient electronic devices obtainable, with applications in the RF power, automotive and aerospace industries. Lightweight diamond devices, capable of high temperature operation in harsh environments, could also be used in radiation detectors and particle physics applications where no other semiconductor devices would survive. The high defect and impurity concentration in natural diamond or high-pressure-high-temperature (HPHT) diamond substrates has made it difficult to obtain reliable results when studying the electronic properties of diamond. However, progress in the growth of high purity Single Crystal Chemical Vapor Deposited (SC-CVD) diamond has opened the perspective of applications under such extreme conditions based on this type of synthetic diamond. Despite the improvements, there are still many open questions. This work will focus on the electrical characterization of SC-CVD diamond by different measurement techniques such as internal photo-emission, I-V, C-V, Hall measurements and in particular, Time-of-Flight (ToF) carrier drift velocity measurements. With these mentioned techniques, some important properties of diamond such as drift mobilities, lateral carrier transit velocities, compensation ratio and Schottky barrier heights have been investigated. Low compensation ratios (ND/NA) < 10-4 have been achieved in boron-doped diamond and a drift mobility of about 860 cm2/Vs for the hole transit near the surface in a lateral ToF configuration could be measured. The carrier drift velocity was studied for electrons and holes at the temperature interval of 80-460 K. The study is performed in the low-injection regime and includes low-field drift mobilities. The hole mobility was further investigated at low temperatures (10-80 K) and as expected a very high mobility was observed. In the case of electrons, a negative differential mobility was seen in the temperature interval of 100-150K. An explanation for this phenomenon is given by the intervally scattering and the relation between hot and cold conduction band valleys. This was observed in direct bandgap semiconductors with non-equivalent valleys such as GaAs but has not been seen in diamond before. Furthermore, first steps have been taken to utilize diamond for infrared (IR) radiation detection. To understand the fundamentals of the thermal response of diamond, Temperature Coefficient of Resistance (TCR) measurements were performed on diamond Schottky diodes which are a candidate for high temperature sensors. As a result, very high TCR values in combination with a low noise constant (K1/f) was observed.
76

"Making things come good" Aborigines and miners at Argyle /

Doohan, Kim Elizabeth. January 2007 (has links)
Thesis (PhD) -- Macquarie University, Division of Environmental and Life Sciences, Department of Human Geography, 2007. / "November 2006". Bibliography: p. 352-398.
77

Characterization of the thermal properties of chemical vapor deposition grown diamond films for electronics cooling

Malcolm, Kirkland D. 27 May 2016 (has links)
Chemical Vapor Deposition (CVD) Diamond is a promising technology for the passive cooling of high power Gallium Nitride (GaN) semiconductor devices. The high thermal conductivity diamond can be placed near the junction of the GaN transistor either by direct growth on the backside of the GaN or by bonding it to the GaN. In both cases, the thermal resistance near the interface with the diamond and any semiconductor it is attached to has the potential for large thermal resistance that limits the effectiveness of the diamond layer. In this work, several techniques are developed to understand the thermal conductivity of thin diamond films and the thermal boundary resistance with Si and GaN substrates. Anisotropic thermal conductivity measurements are made using Raman spectroscopy temperature mapping along with electric resistance heating. For devices, the thermal boundary resistance is measured using transistors as the heat source and thermal mapping using Raman spectroscopy. Quick screening methods based on Raman, Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Photoelectron Spectroscopy (XPS) are also correlated with the thermal properties of the films. Based on this work, the properties of CVD diamond films near the interface of semiconductor substrates is revealed for layers less than 5 µm in thickness and their impact or limitations on thermal management shown through simulations.
78

Theoretical Studies of Diamond for Electronic Applications

Zhao, Shuainan January 2016 (has links)
Diamond has since many years been applied in electronic fields due to its extraordinary properties. Substitutional dopants and surface functionalization have also been introduced in order to improve the electrochemical properties. However, the basic mechanism at an atomic level, regarding the effects of dopants and terminations, is still under debate. In addition, theoretical modelling has during the last decades been widely used for the interpretation of experimental results, prediction of material properties, and for the guidance of future materials. Therefore, the purpose of this research project has been to theoretically investigate the influence of dopants and adsorbates on electronic and geometrical structures by using density functional theory (DFT) under periodic boundary conditions. Both the global and local effects of dopants (boron and phosphorous) and terminations have been studied. The models have included H-, OH-, F-, Oontop-, Obridge- and NH2-terminations on the diamond surfaces. For all terminating species studied, both boron and phosphorous have been found to show a local impact, instead of a global one, on diamond structural geometry and electronic properties. Therefore, the terminating species only affect the DOS of the surface carbon layers. In addition, Oontop-terminated (111) diamond surfaces present reactive surface properties and display metallic conductivity. Moreover, the conductivity of the diamond surface can be dramatically increased by the introduction of a phosphorous dopant in the lattice. The work function of a diamond surface has also been found to be influenced to a large extent by the various adsorbates and the dopant levels. Diamond can also be used as a promising substrate for an epitaxial graphene adlayer. The effects of dopants and terminations on the graphene and diamond (111) interfacial systems have been investigated theoretically in great detail. The interfacial interaction is of the Van der Waal type with an interfacial distance around 3 Å. The interactions between graphene and a terminated diamond substrate were found to be relatively weaker than those for a non-terminated diamond substrate (even with dopants). For all interface systems between graphene and diamond, a diamond-supported graphene adlayer without induced defects can still keep its intrinsic high carrier mobility. A minor charge transfer was observed to take place from the graphene adlayer to a non-terminated diamond substrate (with or without dopants) and to Oontop-, OH- or Obridge-terminated diamond substrates. However, for the situation with an H-terminated diamond surface, the electron transfer took place from the diamond surface to graphene. On the contrary, an interfacial system with a non-terminated diamond surface offers a more pronounced charge transfer than that of the terminated diamond substrates. A small finite band gap at the Dirac point was also observed for the Oontop-terminated diamond-supporting graphene adlayer.
79

Haemocompatibility and charactersation of candidate coatings for heart valve prosthesis

Jones, Mark I. January 1999 (has links)
Prosthetic cardiac valve surgery is a well-established technique, but the search continues for engineering materials with sup..e rior mechanical characteristics in order to extend the service life of the implant. The introduction of pyrolytic carbon was seen as a breakthrough in the development of wear resistant, non-thrombogenic materials for such applications. However, thrombo-embolic phenomena and the need for anticoagulation treatment following valve insertion remain the main problems associated with artificial materials in this application. The work carried out in this research has studied the haemocompatibility of a commercially available, wear resistant TiffiN/TiCfDLC multilayer structure, and a second TiN coating deposited by RF reactive sputtering of a titanium target in a ArIN2 environment, as candidate materials for a heart valve prosthesis. The structure of the RF deposited tiN coating was assessed as a function of deposition conditions, and was seen to develop a particular preferred crystallographic orientation. The nature of this texture was influenced by the condition of the underlying substrate. The effect of substrate condition on the biocompatibility of the tiN coating was studied by assessment of fibroblast attachment and spreading, and by haemolytic analysis of released haemoglobin. The results showed that the initial attachment and orientation of fibroblast cells was influenced by the substrate condition, but no influence on the degree of spreading and haemolytic nature was observed. Characterisation of the TiN coating and the components of the multilayer structure was carried out by Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), stylus profilometry and contact angle measurement. Haemocompatibility was studied by the interaction of the surfaces with plasma proteins, blood platelets and red blood ceUs. Cytotoxicity was studied using the MTT test. The degree of platelet activation on the surfaces correlated with their surface energy. The greatest degree of platelet spreading was observed on the more hydrophilic coatings. The lack of platelet activation seen on the DLC coating is attributed to its smooth surface and hydrophobic nature, resulting in higher levels of adsorption of anticoagulation proteins. The RF sputtered TiN coating caused significant levels of haemolysis and fibroblast cell death. None of the components of the multilayer structure caused such effects, although thrombus formation was observed to a degree on the Ti, TiN and TiC components of this structure. The toxic nature of the RF deposited TiN coating was not attributed to surface chemistry or roughness, but rather to a combination of the hydrophilic nature and the defect state of the surface.
80

Local politics in Kono district, Sierra Leone, 1945-1970

Minikin, Victor January 1971 (has links)
This thesis attempts to examine the structure and functioning of politics in Sierra Leone at the Chiefdom , Constituency, District and National Levels, and the interactions between those levels. It is postulated that previous analyses of Sierra Leone politics have concentrated on the national level to the detriment of the peripheral areas, thus producing a distorted picture of the political process. 'Local' political issues take precedence over 'national' issues because of the nature of the brokerage system which developed in Sierra Leone to cope with the problemE$ resulting from the colonial power imposing the institutions of an integrated nation-state on a fragmented, 'plural' society. The Kono District is examined because it has a long history of opposition to the Central Government. Its people felt a sense of grievance that their district, which produced a large proportion of the national wealth because of the rich diamond deposits there, was not receiving its fair share of development resources. It is also an area undergoing rapid social and economic changes. A chronological approach is adopted to describe the changes between l~f~and 1970, and the work ends with some speculations on the nature of Centre-Periphery relations in Sierra Leone.

Page generated in 0.0457 seconds