• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Capillary Forces in Electrowetting and Precision Self Assembly

Ramadoss, Vivek 19 March 2008 (has links)
Developments in micro and nano technology have great potential in many applications. Two applications that will be addressed in this work are self assembly of microdevices and Electrowetting in microfluidics. Capillary forces are the most critical factor in both of these techniques and need proper characterization. This thesis describes a detailed study of these forces and explains how they were utilized as an effective source of drive in high end applications. Self assembly is a promising alternative to conventional pick and place robotic assembly of micro components. Its benefits include parallel integration of parts with low equipment costs. Various approaches to self assembly have been demonstrated, yet demanding applications like assembly of micro-optical devices require increased positioning accuracy. This thesis proposes a new method for design of self assembly bonds that addresses this need. Current methods have zero force at the desired assembly position and low stiffness. The proposed method uses a substrate assembly feature to provide a high accuracy alignment guide to the part. The capillary bond region of the part and substrate are then modified to create a non-zero positioning force to maintain the part in the desired assembly position. Capillary force models show that this force aligns the part to the substrate assembly feature and reduces the sensitivity of part position to process variation. Thus, the new configuration analyzed proves substantial improvement in positioning accuracy of capillary self assembly. Guidelines are proposed for the design of an effective assembly bond using this new approach. Electrowetting is another application that has been successfully demonstrated as a means of drop manipulations in digital micro-fluidic devices. These demonstrations show that electrowetting actuation holds great promise, but there are also reports of erratic behavior and system degradation. While a method for electrowetting force measurement to track the degradation of the electrowetting response was demonstrated, this thesis analyzes some adverse effects in the electrowetting response due to variations during measurement of electrowetting forces, specially the variation of volume, the tilt in the part considered for measurements, and defective layer response.
2

Dielectric resonator antennas and bandwidth enhancement techniques

Castillo Solis, Maria De los angeles January 2015 (has links)
In this thesis a technique that is being used in another area of technology to optimize light reception in a photographic camera was also applied to the dielectric resonator antenna. The technique consisting of the use of thin film to couple the media and camera impedances resulted in a dielectric resonator antenna bandwidth enhancement technique. The bandwidth enhancement technique was found when thin film dielectric layer structure was used to couple the dielectric resonator and its feed mechanism. Remarkable good performance was detected with a coplanar waveguide fed cylindrical dielectric resonator antenna which resulted in an improvement to its fractional bandwidth from 7.41% to 50.85%. Extensive experimental work was undertaken in order to explore the extent offered in bandwidth performance by using thin film dielectric layer structure in the dielectric resonator antenna performance. The experimental tasks were designed in order to investigate the influence of the thin film dielectric layer structure in relation to its size, shape, thickness, position and direction. Experimental results were supported with simulation work with the computer simulation technology microwave studio. The pieces of the material used for undertaking this experimental work were manually handcrafted. Four different dielectric resonator antenna designs were used in order to carry out the experimental work including the coplanar waveguide fed cylindrical dielectric resonator antenna. The other three dielectric resonator antennas were implemented using the same microstrip feed mechanism. Improved performance in bandwidth was achieved for all the designs. Optimization of the incoming signal was observed when a piece of thin film dielectric layer structure was placed in position between the feed mechanism and the dielectric resonator antenna. The optimization was observed as an enhancement in both the return loss level and the bandwidth of work. Different unexpected operational modes from were activated, such modes being called perturbed modes. Two different shapes were used in this project. Cylindrical dielectric resonator antenna (ɛr = 37) from a commercial provider and two novel rectangular dielectric resonator antennas. The novel rectangular dielectric resonator antennas were created with the methodology presented in this thesis. The rectangular dielectric resonator antennas were elaborated with transparent ceramic material (ɛr = 7) and TMM10i (ɛr = 9.8) from the Rogers Corporation company. The bandwidth enhancement technique was tested in novel embedded dielectric resonator antennas. A coplanar waveguide fed embedded cylindrical dielectric resonator antenna achieved a maximum bandwidth enhancement of 156.77% around f = 3.79 GHz with a thin film dielectric layer structure modified rectangular piece on one edge. Escalation to dielectric resonator antenna design at millimeter wave frequencies was achieved by using thin film dielectric layer structure bandwidth enhancement technique and a handcrafted printed circuit board millimeter wave feed mechanism. The millimeter wave feed mechanisms were achieved using a low cost alternative technique conceived as part of this project. Millimeter wave dielectric resonator antennas were implemented using thin film dielectric layers structure. The antennas deliver an adequate performance in bandwidth. The work presented in this thesis demonstrates dielectric resonator antenna simpler geometry, simple couple schemes, small size, low profile, light weight, and ease of excitation and orientation. Other parameters have also been investigated covering reduced complexity, high degree of flexibility, ease of fabrication and the use of low cost technology to escalate to millimeter wave frequencies.
3

Fabrication and Characterization of 4H-SiC MOS Capacitors with Different Dielectric Layer Treatments

Wutikuer, Otkur January 2018 (has links)
4H-SiC based Metal-Oxide Semiconductor(MOS) capacitors are promising key components for next generation power devices. For high frequency power applications, however, there is a major drawback of this type of devices, i.e. they have low inversion channel mobility that consequently affects the switching operation in MOS Field-Effect Transistors (MOSFETs). Carbon clusters or excess carbon atoms in the interface between the dielectric layer and SiC is commonly considered to be the carrier trapping and scattering centers that lower the carrier channel mobility. Based on the previous work in the research group, a new fabrication process for forming the dielectric layer with a lower density of the trap states is investigated. The process consists of standard semiconductor cleaning, pre-treatments, pre-oxidation, plasma enhanced chemical vapor deposition (PECVD) and post oxidation annealing. I-V measurements of the dielectric strength showed that the resulting layers can sustain proper working condition under an electric field of at least 5MV/cm. C-V characteristics measurements provided the evidence that the proposed method can effectively reduce the interfacial states, which are main culprit for a large flat band voltage shift of C-V characteristics, in particular under annealing at 900°C in nitrogen atmosphere.
4

Studium degradace isolační vrstvy Ta2O5 / Study of the Ta2O5 insulating layer degradation

Velísek, Martin January 2013 (has links)
The aim of the thesis is to examine the dielectric function Ta2O5 insulating layers in tantalum capacitors. The capacitor plugged in the regular mode represents a MIS structure of reverse direction. Three different factors can be determined for the residual current of the component according to its charge transmission mode: the ohmic, Pool–Frenkel, tunnel and Schottky. An apparatus was constructed by the author of the thesis to measure the temporary connection between residual current and rise of temperature of the tantalum capacitors. Annealing of three different sets of tantalum capacitors made by different producers was performed at the temperature of 400 K and nominal voltage of 35 V during the period of 20 days.The experiment has proved the residual current in the electric field changes with rising temperature in time as a result of the ion movement. The singular factors of the residual current are influenced during the process. By the “ion movement” is meant the ion drift influenced by the attached electric field and diffusion caused by the concentration gradient. First, the samples were being annealed for c. 2 x 106 s, and then the residual current was being regenerated under the voltage of 5 V for 106 s. The residual current values increased considerably after annealing, and decreased again to more or less the original level after the regeneration, some of the samples reaching even values bellow the original level. The VA characteristics of the samples measured before and after the process of controlled obsolescence, and after the regeneration prove not only a change in parameters of the different current factors, but also a change of the current transmission mechanism employed in the process.
5

A dual-band dual-polarized antenna for WLAN applications

Steyn, Johanna Mathilde 21 October 2009 (has links)
The recent growth in the ambit of modern wireless communication and in particular WLAN (Wireless Local Area Network) systems has created a niche for novel designs that have the capacity to send and/or receive arbitrary orthogonal polarizations. The designs should also be able to support dual-band functionality, while maintaining a compact structure. The first aim of this dissertation was thus to develop a dual-band single radiating element that can cover the 2.4 GHz (2.4 – 2.484 GHz) band and the 5.2 GHz (5.15 – 5.85 GHz) band for the IEEE 802.11b and IEEE 802.11a WLAN standards respectively. Dual-frequency elements such as stacked-, notched- and dichroic patches have been considered, but due to the size and the high cross-polarization levels associated with these designs, the design process was propelled towards various dipole and monopole configurations. The attributes of various designs were compared, where the double Rhombus antenna pregnant with dual-band and dual-polarization potential was used as basis in the development of the DBDP (Dual-Band Dual-Polarized) antenna design. The single-element design exhibited wide bandwidths, good end-fire radiation patterns and relatively high gain over the 2.4/5.2 GHz bands. A two-element configuration was also designed and tested, to firstly increase the gain of the configuration and secondly to facilitate the transformation of the dipole design into a dual-polarized configuration. The second aim of this dissertation was to develop a dual-polarized array, while making use of only two ports, each pertaining to a specific polarization and to implement the design on a single-dielectric-layer substrate. Most dual-polarized structures such as circular, square and annular microstrip antenna designs only support one band, where multi-dielectric-layer structures are the norm. The disadvantages associated with multi-layered designs, such as fabrication difficulties, high costs, high back lobes and the size of the arrays, further supported the notion of developing an alternative configuration. The second contribution was thus the orthogonal interleaving of the two-element array configurations, to address the paucity of single-dielectric-layer dual-band dual-polarized designs that can be implemented with only two ports. This design was first developed and simulated with the aid of the commercial software package CST Microwave Studio® and the results were later corroborated with the measured data obtained from the Compact Antenna Range at the University of Pretoria. AFRIKAANS : Die onlangse groei in die area van moderne draadlose kommunikasie en met spesifieke verwysing na DLAN (Draadlose Lokale Area Netwerk) stelsels, het ‘n nis vir nuwe ontwerpe geskep. Daar word van hierdie nuwe ontwerpe die kapasiteit verlang om verskeie ortogonale polarisasies te stuur en/of te ontvang in samewerking met dubbel-band eienskappe, terwyl ‘n kompakte struktuur nogsteeds aandag moet geniet. Die eerste doel met hierdie verhandeling was dus die ontwikkeling van ‘n dubbel-band enkel stralingselement wat instaat is om die 2.4 GHz (2.4 – 2.484 GHz) band en die 5.2 GHz (5.15 – 5.85 GHz) band wat as die IEEE 802.11b en die IEEE 802.11a DLAN standaarde respektiewelik bekend staan, te bedek. Dubbel-frekwensie elemente soos onder andere die gepakte-, merkkepie- en dichromatiese strook antenne was as moontlike oplossings ondersoek, maar die grootte en hoë kruispolarisasie wat gewoonlik met hierdie ontwerpe gepaard gaan, het die ontwerpsproses in die rigting van verskeie dipool en monopool konfigurasies gestoot. Die aantreklike eienskappe van die verskeie ontwerpe was met mekaar vergelyk, waar die dubbel Rhombus antenna, verwagtend met dubbel-band dubbel-polarisasie potensiaal, as basis vir die ontwikkeling van die DBDP (Dubbel-Band Dubbel-Polarisasie) antenna ontwerp gebruik is. Die enkelelementontwerp het wye bandwydtes, goeie direktiewe stralingspatrone en relatiewe hoë wins oor die 2.4/5.2 GHz bande geopenbaar. Die twee-element konfigurasies was ook ontwerp en getoets om eerstens die wins van die konfigurasie te verhoog en tweedens om die transformasie na ‘n dubbel-gepolariseerde konfigurasie te fassiliteer. Die tweede doel van hierdie verhandeling was om ‘n dubbel-gepolariseerde elementopstelling met net twee poorte te ontwikkel, waar elkeen verantwoordelik is vir ‘n spesifieke polarisasie, en te implementeer op ‘n enkel-diëlektriese-laag substraat. Die meeste dubble-polarisasiestrukture, soos onder andere die sirkulêre-, vierkantige- en ringvormige antenne ontwerpe, kan net een frekwensieband onderhou en word gewoonlik met behulp van meervoudige-diëlektriese-laagstrukture geimplementeer. Die negatiewe eienskappe soos onder andere die vervaardigingsmoeilikhede, hoë kostes, hoë teruglobbe en die grootte van die meervoudige-elementopstellings wat aan hierdie meervoudige-diëlektriese-laagontwerpe behoort, het verder die denkbeeld van ‘n alternatiewe konfigurasie bekragtig. Die tweede hoofbydrae was dus die ortogonale insleuteling van die twee-element meervoudige-elementopstelling konfigurasies om die geringheid van enkel-diëlektriese-laag dubbel-band dubbel-polarisasie ontwerpe, wat net met twee poorte geïmplementeer kan word, te adresseer. Hierdie ontwerp was eers met behulp van die kommersiële sagtewarepakket CST Microwave Studio® ontwikkel en gesimuleer, waarna die resultate bevestig was deur meetings by die Kompakte Antenna Meetbaan van die Universiteit van Pretoria. / Dissertation (MEng)--University of Pretoria, 2011. / Electrical, Electronic and Computer Engineering / unrestricted

Page generated in 0.0669 seconds