• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Study of the Effect of Harvesting on a Discrete System with Two Competing Species

Clark, Rebecca G 01 January 2016 (has links)
This is a study of the effect of harvesting on a system with two competing species. The system is a Ricker-type model that extends the work done by Luis, Elaydi, and Oliveira to include the effect of harvesting on the system. We look at the uniform bound of the system as well as the isoclines and perform a stability analysis of the equilibrium points. We also look at the effects of harvesting on the stability of the system by looking at the bifurcation of the system with respect to harvesting.
12

Discrete Fractional Calculus and Its Applications to Tumor Growth

Sengul, Sevgi 01 May 2010 (has links)
Almost every theory of mathematics has its discrete counterpart that makes it conceptually easier to understand and practically easier to use in the modeling process of real world problems. For instance, one can take the "difference" of any function, from 1st order up to the n-th order with discrete calculus. However, it is also possible to extend this theory by means of discrete fractional calculus and make n- any real number such that the ½-th order difference is well defined. This thesis is comprised of five chapters that demonstrate some basic definitions and properties of discrete fractional calculus while developing the simplest discrete fractional variational theory. Some applications of the theory to tumor growth are also studied. The first chapter is a brief introduction to discrete fractional calculus that presents some important mathematical functions widely used in the theory. The second chapter shows the main fractional difference and sum operators as well as their important properties. In the third chapter, a new proof for Leibniz formula is given and summation by parts for discrete fractional calculus is stated and proved. The simplest variational problem in discrete calculus and the related Euler-Lagrange equation are developed in the fourth chapter. In the fifth chapter, the fractional Gompertz difference equation is introduced. First, the existence and uniqueness of the solution is shown and then the equation is solved by the method of successive approximation. Finally, applications of the theory to tumor and bacterial growth are presented.
13

Reprezentace řešení lineárních diskrétních systémů se zpožděním / Representation of Solutions of Linear Discrete Systems with Delay

Morávková, Blanka January 2014 (has links)
Disertační práce se zabývá lineárními diskrétními systémy s konstantními maticemi a s jedním nebo dvěma zpožděními. Hlavním cílem je odvodit vzorce analyticky popisující řešení počátečních úloh. K tomu jsou definovány speciální maticové funkce zvané diskrétní maticové zpožděné exponenciály a je dokázána jejich základní vlastnost. Tyto speciální maticové funkce jsou základem analytických vzorců reprezentujících řešení počáteční úlohy. Nejprve je uvažována počáteční úloha s impulsy, které působí na řešení v některých předepsaných bodech, a jsou odvozeny vzorce popisující řešení této úlohy. V další části disertační práce jsou definovány dvě různé diskrétní maticové zpožděné exponenciály pro dvě zpoždění a jsou dokázány jejich základní vlastnosti. Tyto diskrétní maticové zpožděné exponenciály nám dávají možnost najít reprezentaci řešení lineárních systémů se dvěma zpožděními. Tato řešení jsou konstruována v poslední kapitole disertační práce, kde je řešení tohoto problému dáno pomocí dvou různých vzorců.
14

Combinatorial Argument of Partition with Point, Line, and Space / 點線面與空間分割的組合論證法

王佑欣, Yuhsin Wang Unknown Date (has links)
在這篇論文裡,我們將要討論一類古典的問題,這類問題已經經由許多方法解決,例如:遞迴關係式、差分方程式、尤拉公式等等。接著我們歸納低維度的特性,並藉由定義出一組方程式-標準n維空間分割系統-來推廣這些特性到一般的$n$維度空間中。然後我們利用演算法來提供一個更直接的組合論證法。最後,我們會把問題再細分成有界區域與無界區域的個數。 / In this article, we will discuss a class of classical questions had been solved by Recurrence Relation, Difference Equation, and Euler's Formula, etc.. And then, we construct a system of equations -Standard Partition System of n-Dimensional Space- to generalize the properties of maximizing the number of regions made up by k partitioner in an n-dimensional space and look into the construction of each dimension. Also, we provide a more directly Combinatorial Argument by Algorithm for this kind of question. At last, we focus on the number of bounded regions and unbounded regions in sense of maximizing the number of regions.
15

Kvalitativní a numerická analýza zlomkových diferenciálních rovnic / Qualitative and numerical analysis of fractional differential equations

Zemčíková, Michaela January 2013 (has links)
This master's thesis deals with fractional differential equations. One of the aims of this thesis is to mention summary of basic types of fractional differential equations. It is very difficult to find their exact solution, hence we will analyze the main qualitative properties of solution, which are stability and asymptotics. Part of the text will be devoted to fractional difference equations, i.e. discussion of numerical solution. At the end of thesis the Bagley-Torvik model will be described with respect to qualitative properties and numerical solution.
16

Řešení diferenčních rovnic a jejich vztah s transformací Z / Solution of difference equations and relation with Z-transform

Klimek, Jaroslav January 2011 (has links)
This dissertation presents the solution of difference equations and focuses on a method of difference equations solution with the aid of eigenvectors. The first part reminds the basic terms from area of difference equations such as dynamic of difference equations and linear difference equations of first order and higher order. Then the second section recalls also the system of difference equations including the fundamental matrix and general solution description. Afterthat, the method of solving the difference equations with a variation of constants and transform of scalar equations to the system are shown. The second part of the dissertation analyses some known algorithms and methods for the solution of linear difference equations. The Z-transform, its importance and usage for finding the solution of difference equation is recalled. Then the discrete analogue of Putzer's algorithm is mentioned because this algorithm was often used to check the results obtained by the newly described algorithm in further parts of this thesis. Also some ways of the system matrix power are stated. The next section then describes the principle of Weyr's method which is the basic point for further development of the theory including the presentation of the research results gained by Jiří Čermák in this area. The third part describes own solution of the difference equations system via eigenvectors based on the principle of Weyr's method for differential equations. The solution of system of linear homogeneous difference equtions with constant coefficients including the proof is presented and this solution is then extended to nonhomogeneous systems. Consequently to the theory, the influence of a nulity and the multiplicity of roots on the form of the solution is discussed. The last section of this part shows the implementation of the algorithm in Matlab program (for basic simpler cases) and its application to some cases of difference equations and systems with these equations. The final part of the thesis is more practical and it presents the usage of the designed algorithm and theory. Firstly, the algorithm is compared with Z-transform and the method of variation of constants and it is illustrated how to obtain the same results by using these three approaches. Then an example of current response solution in RLC circuit is demonstrated. The continuous case is solved and then the problem is transferred to discrete case and solved with the Z-transform and the method of eigenvectors. The obtained results are compared with the result of the continuous case.
17

Delay Difference Equations and Their Applications / Delay Difference Equations and Their Applications

Jánský, Jiří January 2010 (has links)
Disertační práce se zabývá vyšetřováním kvalitativních vlastností diferenčních rovnic se zpožděním, které vznikly diskretizací příslušných diferenciálních rovnic se zpožděním pomocí tzv. $\Theta$-metody. Cílem je analyzovat asymptotické vlastnosti numerického řešení těchto rovnic a formulovat jeho horní odhady. Studována je rovněž stabilita vybraných numerických diskretizací. Práce obsahuje také srovnání s dosud známými výsledky a několik příkladů ilustrujících hlavní dosažené výsledky.
18

Basics of Qualitative Theory of Linear Fractional Difference Equations / Basics of Qualitative Theory of Linear Fractional Difference Equations

Kisela, Tomáš January 2012 (has links)
Tato doktorská práce se zabývá zlomkovým kalkulem na diskrétních množinách, přesněji v rámci takzvaného (q,h)-kalkulu a jeho speciálního případu h-kalkulu. Nejprve jsou položeny základy teorie lineárních zlomkových diferenčních rovnic v (q,h)-kalkulu. Jsou diskutovány některé jejich základní vlastnosti, jako např. existence, jednoznačnost a struktura řešení, a je zavedena diskrétní analogie Mittag-Lefflerovy funkce jako vlastní funkce operátoru zlomkové diference. Dále je v rámci h-kalkulu provedena kvalitativní analýza skalární a vektorové testovací zlomkové diferenční rovnice. Výsledky analýzy stability a asymptotických vlastností umožňují vymezit souvislosti s jinými matematickými disciplínami, např. spojitým zlomkovým kalkulem, Volterrovými diferenčními rovnicemi a numerickou analýzou. Nakonec je nastíněno možné rozšíření zlomkového kalkulu na obecnější časové škály.
19

Propagation phenomena of integro-difference equations and bistable reaction-diffusion equations in periodic habitats

Ding, Weiwei 03 November 2014 (has links)
Cette thèse concerne les phénomènes de propagation de certaines équations d'évolution dans des habitats périodiques. Dans la première partie, nous étudions les phénomènes d'expansion de certaines équations d'intégro-différence spatialement périodiques. Tout d'abord, nous établissons une théorie générale sur l'existence des vitesses de propagation pour des systèmes d'évolution noncompacts, sous l'hypothèse que les systèmes linéarisés ont des valeurs propres principales. Ensuite, nous introduisons la notion d'irréductibilité uniforme des mesures de Radon finies sur le cercle. On démontre que tout opérateur de convolution généré par une telle mesure admet une valeur propre principale. Enfin, nous prouvons l'existence de vitesses de propagation pour certains équations d'intégro-différence avec des noyaux de dispersion uniformément irréductibles. Dans la deuxième partie, nous étudions les phénomènes de propagation de front pour des équations de réaction-diffusion spatialement périodiques avec des non-linéarités bistables. Nous nous concentrons d'abord sur les solutions de type fronts pulsatoires. Sous diverses hypothèses, il est prouvé que les fronts pulsatoires existent lorsque la période spatiale est petite ou grande. Nous caractérisons aussi le signe des vitesses et nous montrons la stabilité exponentielle globale des fronts pulsatoires de vitesse non nulle. Nous étudions ensuite les solutions de type fronts de transition. Sous des hypothèses convenables, on prouve que les fronts de transition se ramènent aux fronts pulsatoires avec une vitesse non nulle. Mais nous montrons aussi l'existence de nouveaux types de fronts de transition qui ne sont pas des fronts pulsatoires. / This dissertation is concerned with propagation phenomena of some evolution equations in periodic habitats. The main results consist of the following two parts. In the first part, we investigate the spatial spreading phenomena of some spatially periodic integro-difference equations. Firstly, we establish a general theory on the existence of spreading speeds for noncompact evolution systems, under the hypothesis that the linearized systems have principal eigenvalues. Secondly, we introduce the notion of uniform irreducibility for finite Radon measures on the circle. It is shown that, any generalized convolution operator generated by such a measure admits a principal eigenvalue. Finally, applying the above general theories, we prove the existence of spreading speeds for some integro-difference equations with uniformly irreducible dispersal kernels. In the second part, we study the front propagation phenomena of spatially periodic reaction-diffusion equations with bistable nonlinearities. Firstly, we focus on the propagation solutions in the class of pulsating fronts. It is proved that, under various assumptions on the reaction terms, pulsating fronts exist when the spatial period is small or large. We also characterize the sign of the front speeds and we show the global exponential stability of the pulsating fronts with nonzero speed. Secondly, we investigate the propagation solutions in the larger class of transition fronts. It is shown that, under suitable assumptions, transition fronts are reduced to pulsating fronts with nonzero speed. But we also prove the existence of new types of transition fronts which are not pulsating fronts.
20

Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie / Modular analysis and control of notworks of balance laws in infinite dimension

Bou Saba, David 26 November 2018 (has links)
Les réseaux de lois de bilan sont définis par l'interconnexion, via des conditions aux bords, de modules élémentaires individuellement caractérisés par la conservation de certaines quantités. Des applications industrielles se trouvent dans les réseaux de lignes de transmission électriques (réseaux HVDC), hydrauliques et pneumatiques (réseaux de distribution du gaz, de l'eau et du fuel). La thèse se concentre sur l'analyse modulaire et la commande au bord d'une ligne élémentaire représentée par un système de lois de bilan en dimension infinie, où la dynamique de la ligne est prise en considération au moyen d'équations aux dérivées partielles hyperboliques linéaires du premier ordre et couplées deux à deux. Cette dynamique permet de modéliser d'une manière rigoureuse les phénomènes de transport et les vitesses finies de propagation, aspects normalement négligés dans le régime transitoire. Les développements de ces travaux sont des outils d'analyse qui testent la stabilité du système, et de commande au bord pour la stabilisation autour d'un point d'équilibre. Dans la partie analyse, nous considérons un système de lois de bilan avec des couplages statiques aux bords et anti-diagonaux à l’intérieur du domaine. Nous proposons des conditions suffisantes de stabilité, tant explicites en termes des coefficients du système, que numériques par la construction d'un algorithme. La méthode se base sur la reformulation du problème en une analyse, dans le domaine fréquentiel, d'un système à retard obtenu en appliquant une transformation backstepping au système de départ. Dans le travail de stabilisation, un couplage avec des dynamiques décrites par des équations différentielles ordinaires (EDO) aux deux bords des EDP est considéré. Nous développons une transformation backstepping (bornée et inversible) et une loi de commande qui, à la fois stabilise les EDP à l'intérieur du domaine et la dynamique des EDO, et élimine les couplages qui peuvent potentiellement mener à l’instabilité. L'efficacité de la loi de commande est illustrée par une simulation numérique. / Networks of balance laws are defined by the interconnection, via boundary conditions, of elementary modules individually characterized by the conservation of physical quantities. Industrial applications of such networks can be found in electric (HVDC networks), hydraulic and pneumatic (gas, water and oil distribution) transmission lines. The thesis is focused on modular analysis and boundary control of an elementary line represented by a system of balance laws in infinite dimension, where the dynamics of the line is taken into consideration by means of first order two by two coupled linear hyperbolic partial differential equations. This representation allows to rigorously model the transport phenomena and finite propagation speed, aspects usually neglected in transient regime. The developments of this work are analysis tools that test the stability, as well as boundary control for the stabilization around an equilibrium point. In the analysis section, we consider a system of balance laws with static boundary conditions and anti-diagonal in-domain couplings. We propose sufficient stability conditions, explicit in terms of the system coefficients, and numerical by constructing an algorithm. The method is based on reformulating the analysis problem as an analysis of a delay system in the frequency domain, obtained by applying a backstepping transform to the original system. In the stabilization work, couplings with dynamic boundary conditions, described by ordinary differential equations (ODE), at both boundaries of the PDEs are considered. We develop a backstepping (bounded and invertible) transform and a control law that at the same time, stabilizes the PDEs inside the domain and the ODE dynamics, and eliminates the couplings that are a potential source of instability. The effectiveness of the control law is illustrated by a numerical simulation.

Page generated in 0.1134 seconds