• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 39
  • 17
  • 17
  • 17
  • 17
  • 13
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 124
  • 124
  • 124
  • 40
  • 40
  • 38
  • 24
  • 23
  • 22
  • 20
  • 17
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Dinâmica caótica e sincronização de fase em mapas acoplados /

Silva, Aline Pereira da. January 2011 (has links)
Orientador: Ricardo Egydio de Carvalho / Banca: Elbert Einstein Nehrer Macau / Banca: José Manoel Balthazar / Resumo: Este trabalho tem como objetivo entender e desenvolver estudos relacionados à sincronização de fase em sistemas dinâmicos discretos. Foi utilizado um modelo simples de osciladores não-lineares denominado mapa circular. Inicialmente é apresentado um estudo extensivo do mapa circular e suas propriedades dinâmicas. É apresentado também a transição de movimento quase-periódico para movimento caótico em uma rota quase-periódica para o caos do mapa circular. Em seguida, foram acoplados dois mapas circulares através de um acoplamento bidirecional não linear. O efeito de transição para o estado síncrono é induzido por uma crise interior, através do surgimento de um atrator caótico, o qual induz periodicidade oscilatória no sistema. É mostrado que a sincronização de dois mapas circulares acoplados é influenciada pela diferença do número de rotação e a intensidade do parâmetro de não linearidade. A transição para o estado não síncrono é induzida por uma crise interior, através da expansão do atrator caótico até perder sua periodicidade. Posteriormente, foi introduzido um ruído branco gaussiano no acoplamento e um ruído aditivo em dois sistemas diferentes de dois mapas circulares acoplados. Os resultados obtidos para o primeiro sistema mostraram que no espaço de fases, a ação de um ruído branco gaussiano no acoplamento e aditivo destroem o atrator caótico, e o sistema perde sincronização de fase perfeita e imperfeita. Os resultados obtidos para o segundo sistema mostraram que no espaço de fases, a ação de um ruído branco gaussiano no acoplamento destrói o atrator caótico, e o sistema perde sincronização de fase perfeita e imperfeita. No entanto, a ação de um ruído branco gaussiano aditivo induz um efeito de segunda ordem, no qual ocorre a dessincronização de fase imperfeita... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This reach has as objective to understand and to develop studies related to the phase synchronization in discreet dynamical systems. A simple model of oscillators non-linear denominated circle map was studied. Initially an extensive study of the chaotic dynamics of the circle map is presented. It is also presented the transition of quasi-periodic behavior for chaotic behavior in a quasi-periodic route to chaos in the circle map. Soon after, was introduced a non-linear bidirectional coupling in two circle maps, and studied the transition effects to phase synchronization, induced by interior crisis, through appearance of a chaotic attractor, which induce oscillatory periodicity in the system. It is shown that the phase synchronization of two coupled circle maps is influenced by the difference of the winding number and the intensity of the non-linear parameter. The transition for the nonsynchronization is induced by interior crisis, through of expansion of chaotic attractor. Later on, a gaussian white noise was introduced in the coupling and an addictive noise in two different systems of two coupled circle maps. The results for the first system show that a additive and coupling gaussian white noise induce the expansion of the chaotic attractor, and consequently, induce a loss of perfect and imperfect phase synchronization. The results for the second system show that a coupling gaussian white noise induce the loss of perfect and imperfect phase synchronization. However, the additive gaussian white noise induce an effect of second order, in which occur the loss of imperfect phase synchronization, but the perfect phase synchronization stay in system / Mestre
102

Sistemas dinâmicos finitos : Paciência Búlgara (Shift em partições e composições cíclicas) /

Tambellini, Leonardo January 2013 (has links)
Orientador: Vanderlei Minori Horita / Banca: Carlos Gustavo T. de A. Moreira / Banca: Claudio Aguinaldo Buzzi / Resumo: Neste trabalho abordamos um tema introdutório na interseção de duas áreas da Matemáticas, Sistemas Dinâmicos e Teoria dos Números. Através de um jogo aparentemente ingênuo, a Paciência Búlgara, estudamos dinâmicas em conjuntos finitos. Devidoà finitude do domínio, todos os pontos do sistema convergem para uma órbita periódica, mas interessante é saber quantas órbitas distintas o sistema apresenta em função da quantidade de elementos do domínio. Outra pergunta natural é sobre o tempo de convergência a estas órbitas. Estudamos também uma variação deste jogo, a Paciência Carolina / Abstract: This work refers to a introductory topic in the intersection of two areas in Mathematics, Dynam-ical Systems and Number Theory. Motivated to a game seemingly naive, Bulgarian Solitaire, we study dynamics in finite sets. Due to the finiteness of the domain,all points of the sys-tem converge to a periodic orbit, but it is interesting to know how many distinct orbits the system displays depending on the size of the domain. Another natural question is about the convergence time of these orbits. We also study a variation of this game, Carolina Solitaire / Mestre
103

Conjuntos minimais e caóticos em campos de vetores planares suaves por partes /

Gazetta, Daniele Alessandra Reghini. January 2016 (has links)
Orientador: Tiago de Carvalho / Banca: Claudio Aguinaldo Buzzi / Banca: Pedro Toniol Cardin / Resumo: O principal resultado dessa dissertação é o Teorema de Poincaré-Bendixson para campos de vetores planares suaves por partes, que nos diz quais são os tipos de conjuntos limite. Estudaremos também detalhes a respeito dos conceitos de conjuntos minimais e caóticos em campos de vetores planares suaves por partes / Abstract: The main result of this work is the Poincaré - Bendixson Theorem for planar piecewise smooth vector fields, which tell us what kind of limit sets arise in this context. We will also study details about the concepts of minimal and chaotic sets in planar piecewise smooth vector fields / Mestre
104

Applications Of Lie Algebraic Techniques To Hamiltonian Systems

Sachidanand, Minita Susan 12 1900 (has links) (PDF)
No description available.
105

Sistemas dinâmicos e o método do filtro de Kalman /

Solorzano Movilla, Jose Gregorio. January 2016 (has links)
Orientador: Selene Maria Coelho Loibel / Banca: Maiko Fernandes Buzzi / Banca: Carmen Maria Andreazza / Resumo: Estimar os estados de um sistema é um problema que a cada dia assume maior importância devido ao grande interesse por conhecer com exatidão os resultados dados pelos sistemas dinâmicos em qualquer tempo. Principalmente nos casos onde o sistema é estocástico, o problema da estimação apresenta uma maior complexidade. É nesse contexto que os estudos que Kalman realizou no século XX, sobre a estimação de sistemas dinâmicos estocásticos, ganharam maior relevância. O ltro de Kalman foi o principal resultado desses estudos, pela e cácia demonstrada dentro desse campo de estudo. Este trabalho tem como eixo principal o ltro de Kalman e sua aplicação tendo importância como o melhor estimador para os estados de sistemas dinâmicos lineares estocásticos em tempo discreto / Abstract: Estimating the states of a system is a problem of great importance due to interest in knowing exactly the results given by dynamic systems at any time. Moreover, if the system is stochastic, what causes the estimation problem to have complexity. In this context, Kalman studies in the previous century on the estimation of stochastic dynamical systems, whose result is the lter, which, due to its e ciency, is the most used in this eld. In this work the main focus is the Kalman lter and its application having in view its importance as the best estimator for the states of linear dynamic stochastic systems of discrete time / Mestre
106

Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Richardson, Peter A. (Peter Adolph), 1955- 12 1900 (has links)
In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers.
107

Computer Simulation of Dynamic Systems

Smith, Charles G. 01 January 1987 (has links) (PDF)
Computer simulation of a control system is a valuable tool in design or performance evaluation. This is especially true when non-linear elements cannot be ignored and must be included within the model. A general purpose block diagram oriented simulation program will be developed which can utilize continuous, discrete and non-linear building blocks. The software tool will be demonstrated by means of an example.
108

Curve shortening in second-order lagrangian

Unknown Date (has links)
A second-order Lagrangian system is a generalization of a classical mechanical system for which the Lagrangian action depends on the second derivative of the state variable. Recent work has shown that the dynamics of such systems c:an be substantially richer than for classical Lagrangian systems. In particular, topological properties of the planar curves obtained by projection onto the lower-order derivatives play a key role in forcing certain types of dynamics. However, the application of these techniques requires an analytic restriction on the Lagrangian that it satisfy a twist property. In this dissertation we approach this problem from the point of view of curve shortening in an effort to remove the twist condition. In classical curve shortening a family of curves evolves with a velocity which is normal to the curve and proportional to its curvature. The evolution of curves with decreasing action is more general, and in the first part of this dissertation we develop some results for curve shortening flows which shorten lengths with respect to a Finsler metric rather than a Riemannian metric. The second part of this dissertation focuses on analytic methods to accommodate the fact that the Finsler metric for second-order Lagrangian system has singularities. We prove the existence of simple periodic solutions for a general class of systems without requiring the twist condition. Further; our results provide a frame work in which to try to further extend the topological forcing theorems to systems without the twist condition. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
109

Stability analysis for singularly perturbed systems with time-delays

Unknown Date (has links)
Singularly perturbed systems with or without delays commonly appear in mathematical modeling of physical and chemical processes, engineering applications, and increasingly, in mathematical biology. There has been intensive work for singularly perturbed systems, yet most of the work so far focused on systems without delays. In this thesis, we provide a new set of tools for the stability analysis for singularly perturbed control systems with time delays. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
110

Controle de dinâmica caótica com toros robustos /

Martins, Caroline Gameiro Lopes. January 2010 (has links)
Orientador: Ricardo Egydio de Carvalho / Banca: Iberê Luiz Caldas / Banca: Marisa Roberto / Resumo: Investigamos nesta dissertação a introdução de uma barreira dinâmica em diferentes sistemas físicos caóticos, a fim de analisar a influência que esta barreira causa na dinâmica e topologia destes sistemas. A barreira principal deste estudo é a barreira denominada Toro Robusto, que nada mais é do que uma curva invariante no espaço de fases em meio a estruturas de ressonância, mares de caos, etc. A barreira Toro Robusto bloqueia a difusão caótica no espaço de fases associado ao sistema físico, e causa também uma estabilização em sua vizinhança linear. Introduziremos Toros Robustos em vários tipos de sistemas dinâmicos, como por exemplo, em uma Hamiltoniana "Toy Model" a fim de entender o seu efeito no processo de reconexão ou "overlap" de ressonâncias isócronas. Toros Robustos quebrando a dimerização de cadeias de ressonância também foram estudados no mapa padrão "não-twist". O bloqueio da difusão de Arnold no mapa padrão acoplado também foi mostrado, assim como, a introdução de Toros Robustos em sistemas utilizados em física de plasmas, como meio de controle de caos em plasma confinado em Tokamak. Outra barreira apresentada aqui é a barreira do tipo "meander" que surge através do processo de reconexão de ressonâncias no espaço de fases. Introduziremos um novo mapa discreto que chamamos de Mapa padrão "não-twist" labiríntico, que apresenta múltiplas regiões de barreiras "meanders" por todo o espaço de fases / Abstract: We investigated in this work the introduction of a dynamical barrier in different chaotic physical systems in order to analyze the influence that it causes in the topology and in the dynamics of them. The main barrier studied here is called Robust Tori which is an invariant curve in the phase space permeated by resonance structures and chaotic seas. The Robust Torus barrier blocks the chaotic diffusion in the phase space of the associated physical system, and it also causes a linear stabilization in its neighborhood. Robust Tori will be introduced in several types of dynamic systems, such as in a Toy Model Hamiltonian in order to understand their effect on the reconnection process or overlap of isochronous resonances. The breakdown of resonance dimerization by Robust Tori was also studied using the nontwist standard map. The blocking of Arnold diffusion in the coupled standard map was also shown, as well as the introduction of Robust Tori in relevant models for plasma physics as a tool for controlling chaos in confined plasmas in Tokamaks. Another barrier, which is presented here, is the meander barrier that emerges through the reconnection process of resonances in phase space. We will also introduce a new discrete map, which we call labyrinthic standard non-twist map that shows multiple regions of meanders barriers around the phase space / Mestre

Page generated in 0.1522 seconds