Spelling suggestions: "subject:"differential equations.particle"" "subject:"differential attenuationspotential""
181 |
Symmetry methods and conservation laws applied to the Black-Scholes partial differential equation03 July 2012 (has links)
M.Sc. / The innovative work of Black and Scholes [1, 2] extended the mathematical understanding of the options pricing model, beginning the deliberate study of the theory of option pricing. Its impact on the nancial markets was immediate and unprecedented and is arguably one of the most important discoveries within nance theory to date. By just inserting a few variables, which include the stock price, risk-free rate of return, option's strike price, expiration date, and an estimate of the volatility of the stock's price, the option-pricing formula is easily used by nancial investors. It allows them to price various derivatives ( nancial instrument whose price and value are derived from the value of assets underlying them), including options on commodities, nancial assets and even pricing of employee stock options. Hence, European1 and American2 call or put options on a non-dividend-paying stock can be valued using the Black-Scholes model. All further advances in option pricing since the Black-Scholes analysis have been re nements, generalisations and expansions of the original idea presented by them.
|
182 |
Lie group approach to Cauchy's problems : solution of an initial value problem for the Black-Scholes modelSoh, Celestin Wafo January 1997 (has links)
A Lie group assisted method is used to solve explicitly an arbitrary initial
value problem for the Black-Scholes equation, This equation plays a crucial
role in the mathematics of finance. It was first solved by its inventors for a
special initial data. Our solution generalises the well-known Black-Scholes
formula. / Andrew Chakane 2019
|
183 |
Derivation of planar diffeomorphisms from Hamiltonians with a kickUnknown Date (has links)
In this thesis we will discuss connections between Hamiltonian systems with a periodic kick and planar diffeomorphisms. After a brief overview of Hamiltonian theory we will focus, as an example, on derivations of the Hâenon map that can be obtained by considering kicked Hamiltonian systems. We will conclude with examples of Hâenon maps of interest. / by Zalmond C. Barney. / Thesis (M.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
|
184 |
On the Laplacian and fractional Laplacian in exterior domains, and applications to the dissipative quasi-geostrophic equationUnknown Date (has links)
In this work, we develop an extension of the generalized Fourier transform for exterior domains due to T. Ikebe and A. Ramm for all dimensions n>2 to study the Laplacian, and fractional Laplacian operators in such a domain. Using the harmonic extension approach due to L. Caffarelli and L. Silvestre, we can obtain a localized version of the operator, so that it is precisely the square root of the Laplacian as a self-adjoint operator in L2 with DIrichlet boundary conditions. In turn, this allowed us to obtain a maximum principle for solutions of the dissipative two-dimensional quasi-geostrophic equation the exterior domain, which we apply to prove decay results using an adaptation of the Fourier Splitting method of M.E. Schonbek. / by Leonardo Kosloff. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
|
185 |
Derivada topológica bayesiana no problema inverso da condutividade / Bayesian toological derivative for the conductivity inverse problemOliveira, Luis Jonatha Rodrigues 21 March 2013 (has links)
Made available in DSpace on 2015-03-04T18:57:33Z (GMT). No. of bitstreams: 1
TeseVersaoFinal.pdf: 2548796 bytes, checksum: f806e85972c47762b6bc09c0773b3430 (MD5)
Previous issue date: 2013-03-21 / The inverse conductivity problem consists in determining the thermal conductivity distribution of a body from boundary measurements. In this work, we want to reconstruct a set of inclusions with a different thermal conductivity from the medium by subjecting the body through a thermal excitations and taking temperature measurements on the boundary. Since the inverse conductivity problem is overdetermined, the idea is to rewrite it in the form of an optimization problem. In particular, we minimize a shape functional based on the Kohn-Vogelius criterion that measures the misfit between two auxiliaries problems. One of them contains information on the boundary measurement while the other one contains information on the boundary excitation. Over the solution to the inverse problem, both solutions to the auxiliaries problems coincide. The Kohn-Vogelius criterion is then minimized by using the so-called topological derivative concept. This derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. Next, the inverse problem is redefined in the context of Bayesian inference, that consists in codifying a previously known information from a priori probability distribution to be updated through the Bayes Theorem once a new information is introduced. In order to reduce the computational cost of sample numerical methods commonly used in this type of approach, the topological derivative is used as a probability indicator in the construction of the likelihood function to obtain a probability distribution of the set of inclusions, which leads to a probabilistic reconstruction algorithm based on the Bayesian topological derivative concept introduced in this work for the first time. Finally, some numerical experiments are presented. / O problema inverso da condutividade consiste em determinar a distribuição de condutividade térmica de um corpo a partir de medidas tomadas na fronteira. Neste trabalho, objetiva-se reconstruir um conjunto de inclusões com coeficiente de condutividade térmica distinto do meio, submetendo o corpo a excitações térmicas e medindo a correspondente distribuição de temperatura sobre sua fronteira. Como o problema inverso da condutividade é sobredeterminado, a ideia é reescrevê-lo na forma de um problema de otimização. Em particular, objetiva-se minimizar um funcional de forma baseado no critério de Kohn-Vogelius, que mede a diferença entre as soluções de dois problemas auxiliares. Um deles contém informação sobre a leitura e outro sobre a excitação, ambos definidos na fronteira do corpo. Sobre a solução do problema inverso, ambas as soluções dos problemas auxiliares coincidem. O critério de Kohn-Vogelius é então minimizado utilizando o conceito de derivada topológica, que mede a sensibilidade de um dado funcional quando uma perturbação infinitesimal singular é introduzida em um ponto arbitrário do domínio. Em seguida, o problema inverso é redefinido no contexto de inferência bayesiana, que consiste em codificar informações previamente conhecidas a partir de uma distribuição de probabilidade a priori a ser atualizada através do teorema de Bayes, a cada nova informação introduzida. Com a finalidade de se reduzir o custo computacional de métodos numéricos de amostragem, comumente utilizados neste tipo de abordagem, a derivada topológica será utilizada como um indicador de probabilidade na construção da função de verossimilhança para se obter uma distribuição de probabilidade do conjunto de inclusões, o que conduz a um algoritmo de reconstrução probabilístico baseado no conceito de derivada topológica bayesiana, introduzido pela primeira vez nesse trabalho. Finalmente, são apresentados alguns experimentos numéricos.
|
186 |
Análise de sensibilidade topológica do problema semi-acoplado termo-mecânico / Topological sensitivity analysis of the semi-couled thermo-mechanical problemRodrigues, José Edmundo Esparta 21 March 2013 (has links)
Made available in DSpace on 2015-03-04T18:57:37Z (GMT). No. of bitstreams: 1
Tese Esparta.pdf: 1410380 bytes, checksum: 6f4e3d1a3cbb8918a9f6e8824c0c550a (MD5)
Previous issue date: 2013-03-21 / Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior / The topological derivative measures the sensitivity of a given shape functional when an infinitesimal
singular domain perturbation is introduced in an arbitrary point of the domain of the problem.
According to the specialized literature, the topological derivative has been fully developed for a wide range of one single physical phenomenon modeled by partial differential equation.
The purpose of the present work is to carry out the topological sensitivity analysis in a semi-coupled model.
In particular, is considered the classical mechanical problem of elasticity with initial thermal stress.
The linear elasticity problem is modeled by the Navier equation and it's coupled with the steady-state heat conduction problem (modeled by the Laplace equation).
The mechanical coupling term comes out from the thermal stress induced by the temperature field.
Since this term is non-local, is necessary to introduce a non-standard adjoint state, which allows to obtain a closed form for the topological derivative.
Finally, is provided a full mathematical justification for the derived formulas and develop precise
estimates for the remainders of the topological asymptotic expansion. / A derivada topológica mede a sensibilidade de um funcional de forma quando uma perturbação singular infinitesimal é introduzida num ponto arbitrário do domínio de definição do problema.
Na literatura especializada, a derivada topológica tem sido desenvolvida para uma grande variedade
de fenômenos físicos modelados por somente uma equação diferencial parcial.
O presente trabalho tem como propósito principal desenvolver a análise de sensibilidade topológica em um modelo semi-acoplado. Considera-se, em particular, o problema mecânico clássico de elasticidade com tensão inicial de origem térmica.
O problema elástico, modelado pela equação de Navier, encontra-se acoplado a um problema de condução de calor estacionário (modelado pela equação de Laplace).
O termo de acoplamento mecânico vem da tensão térmica induzida pelo campo de temperatura. Como este termo de acoplamento é não local, na análise de sensibilidade é necessário introduzir um estado adjunto não padrão que permite obter uma forma fechada para a derivada topológica. Finalmente, são fornecidas as justificativas matemáticas completas das fórmulas obtidas e estimativas precisas dos termos remanescentes da expansão assintótica topológica.
|
187 |
Derivada topológica na otimização de estruturas submetidas à pressão hidrostática / Topological derivative-based topology design of structures submitted to hydrostatic pressureXavier, Marcel Duarte da Silva 21 March 2014 (has links)
Made available in DSpace on 2015-03-04T18:58:04Z (GMT). No. of bitstreams: 1
XavierMsc2014.pdf: 634165 bytes, checksum: 805b0a958b910d37233afe3e1eb19713 (MD5)
Previous issue date: 2014-03-21 / A derivada topologica mede a sensibilidade de um dado funcional de forma em relacao a uma perturbacao singular infinitesimal no dominio, tal como a insercao de furos, inclusoes, termos fonte ou ate mesmo trincas. Este conceito relativamente novo tem sido utilizado com exito no tratamento de uma ampla gama de problemas. Neste trabalho, a derivada topologica e aplicada no contexto de otimizacao topologica de estruturas submetidas a pressao hidrostatica, levando em conta uma restricao de volume. Em particular, a expansao assintotica topologica da energia potencial total associada ao problema de elasticidade linear em estado plano de tensao ou deformacao, considerando como perturbacao topologica a nucleacao de uma inclusao circular com condicao de transmissao nao homogenea, e rigorosamente desenvolvida, o que representa a principal contribuicao deste trabalho. Fisicamente, tem-se uma pressao hidrostatica atuando sobre a interface da perturbacao topologica. O resultado obtido e entao utilizado para construir um algoritmo de otimizacao topologica baseado na derivada topologica associada, conjuntamente com o metodo de representacao do dominio por funcao level-set. Finalmente, sao apresentados alguns exemplos numericos. vii
|
188 |
Potências fracionárias de operadores : resultados teóricos /Rocha, Daniel Vieira da. January 2016 (has links)
Orientador: German Lozada-Cruz / Banca: Lucas Catão de Freitas Ferreira / Banca: Sérgio Leandro Nascimento Neves / Resumo: Neste trabalho são definidas as potências fracionárias de operadores lineares não-negativos via abordagem de Balakrishnan/Komatsu e exibidas as principais propriedades para as potências desses operadores. Estes são construídos por meio do Cálculo Funcional de Hirsh a fim de que a aditividade e multiplicatividade nos expoentes sejam preservadas. Um breve estudo das potências fracionárias é dedicado ao operador laplaciano distribucional −∆p, o qual é parte bastante recorrente em equações do calor semilinear. Um exemplo desse tipo de equação é estudado no capítulo final deste trabalho / Abstract: This work is concerned to define the fractional powers of non negative linear operators via Balakrisnan/Komatsu's approach and to show the main properties for the powers of such operators. They are built by mean of Hirsch Functional Calculus aiming to preserve additivity and multiplicativity of exponents. A brief study of fractional powers is devoted to distributional Laplacian −∆p, which appears very often in semilinear heat equations. An example of such equation is discussed in the last chapter / Mestre
|
189 |
Viscosity Characterizations of Explosions and ArbitrageWang, Yinghui January 2016 (has links)
No description available.
|
190 |
Spike-vortex solutions for nonlinear Schrödinger system.January 2007 (has links)
Wang, Yuqian. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 36-39). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.ii / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Properties of approximate solutions --- p.6 / Chapter 3 --- Liapunov-Schmidt Reduction --- p.17 / Chapter 4 --- Critical point of the reduced energy functional --- p.28 / Bibliography --- p.36
|
Page generated in 0.1606 seconds