Spelling suggestions: "subject:"differential equation"" "subject:"ifferential equation""
251 |
Parameterschätzung in gewöhnlichen DifferentialgleichungenRathmann, Wigand 09 May 2012 (has links)
Zur Beschreibung von realen Prozessen werden oft Differentialgleichungen herangezogen. Liegen nun Messdaten von diesen Prozessen vor, so sollen auch die Parameter im mathematischen Modell so gewählt werden, dass diese den Messungen entsprechen. Dieser Vortrag zeigt, wie dies in Mathcad mit der Funktion genfit realisiert werden kann.
|
252 |
Topologický nosič řešení stochastických diferenciálních rovnic / Topological support of solutions to stochastic differential equationsŠimon, Prokop January 2016 (has links)
No description available.
|
253 |
Matematika a implementace PBPK modelů / Mathematics and implementations of physiologically based pharmacokinetic modelingRakhimov, Yestay January 2018 (has links)
Charles University Faculty of Pharmacy in Hradec Kr'alov'e Department of Biophysics and Physical Chemistry Candidate: Yestay Rakhimov Supervisor: doc. Erik Jurjen Duintjer Tebbens, Ph.D. Title of diploma thesis: Mathematics and implementations of physiologically based phar- macokinetic modeling The thesis addresses some basic aspects of pharmacokinetic modeling, which is used to describe pharmacokinetic processes. Understanding these processes is important for example to determine optimal concentrations of drugs dosing. The thesis focuses on mathematical proofs of a number of pharmacokinetic equa- tions, which are often not given in standard books. The derived equations are illustrated with numerical experiments for a particular drug in the software PharmCalcCl and MAT- LAB. 4
|
254 |
Analytical solution of a linear, elliptic, inhomogeneous partial differential equation with inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions for a special rotationally symmetric problem of linear elasticityEschke, Andy January 2014 (has links)
The analytical solution of a given inhomogeneous boundary value problem of a linear, elliptic, inhomogeneous partial differential equation and a set of inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions is derived in the present paper. In the context of elasticity theory, the problem arises for a non-conservative symmetric ansatz and an extended constitutive law shown earlier. For convenient user application, the scalar function expressed in cylindrical coordinates is primarily obtained for the general case before being expatiated on a special case of linear boundary conditions.
|
255 |
Delay Difference Equations and Their Applications / Delay Difference Equations and Their ApplicationsJánský, Jiří January 2010 (has links)
Disertační práce se zabývá vyšetřováním kvalitativních vlastností diferenčních rovnic se zpožděním, které vznikly diskretizací příslušných diferenciálních rovnic se zpožděním pomocí tzv. $\Theta$-metody. Cílem je analyzovat asymptotické vlastnosti numerického řešení těchto rovnic a formulovat jeho horní odhady. Studována je rovněž stabilita vybraných numerických diskretizací. Práce obsahuje také srovnání s dosud známými výsledky a několik příkladů ilustrujících hlavní dosažené výsledky.
|
256 |
Stability of Neutral Delay Differential Equations and Their Discretizations / Stability of Neutral Delay Differential Equations and Their DiscretizationsDražková, Jana January 2014 (has links)
Disertační práce se zabývá asymptotickou stabilitou zpožděných diferenciálních rovnic a jejich diskretizací. V práci jsou uvažovány lineární zpožděné diferenciální rovnice s~konstantním i neohraničeným zpožděním. Jsou odvozeny nutné a postačující podmínky popisující oblast asymptotické stability jak pro exaktní, tak i diskretizovanou lineární neutrální diferenciální rovnici s konstantním zpožděním. Pomocí těchto podmínek jsou porovnány oblasti asymptotické stability odpovídajících exaktních a diskretizovaných rovnic a vyvozeny některé vlastnosti diskrétních oblastí stability vzhledem k měnícímu se kroku použité diskretizace. Dále se zabýváme lineární zpožděnou diferenciální rovnicí s neohraničeným zpožděním. Je uveden popis jejích exaktních a diskrétních oblastí asymptotické stability spolu s asymptotickým odhadem jejich řešení. V závěru uvažujeme lineární diferenciální rovnici s více neohraničenými zpožděními.
|
257 |
Moderní metody řešení eliptických parciálních diferenciálních rovnic / Advanced Eliptic Partial Differential Equations SolutionValenta, Václav January 2009 (has links)
Partial differential equations solution and methods for transformation to a large sets of ordinary equations is described in this work. Taylor series method is important for this work. This method needs higher derivatives for correct work. Ways how to compute higher derivatives are also discused in this work.
|
258 |
Analytical solution of a linear, elliptic, inhomogeneous partial differential equation in the context of a special rotationally symmetric problem of linear elasticityEschke, Andy January 2014 (has links)
In addition to previous publications, the paper presents the analytical solution of a special boundary value problem which arises in the context of elasticity theory for an extended constitutive law and a non-conservative symmetric ansatz. Besides deriving the general analytical solution, a specific form for linear boundary conditions is given for user convenience.
|
259 |
Brownian molecules formed by delayed harmonic interactionsGeiss, Daniel, Kroy, Klaus, Holubec, Viktor 26 April 2023 (has links)
A time-delayed response of individual living organisms to information exchanged within flocks or swarms
leads to the emergence of complex collective behaviors. A recent experimental setup by (Khadka et al 2018
Nat. Commun. 9 3864), employing synthetic microswimmers, allows to emulate and study such behavior
in a controlled way, in the lab. Motivated by these experiments, we study a system of N Brownian particles
interacting via a retarded harmonic interaction. For N 3 , we characterize its collective behavior
analytically, by solving the pertinent stochastic delay-differential equations, and for N>3 by Brownian
dynamics simulations. The particles form molecule-like non-equilibrium structures which become
unstable with increasing number of particles, delay time, and interaction strength. We evaluate the entropy
and information fluxes maintaining these structures and, to quantitatively characterize their stability,
develop an approximate time-dependent transition-state theory to characterize transitions between
different isomers of the molecules. For completeness, we include a comprehensive discussion of the
analytical solution procedure for systems of linear stochastic delay differential equations in finite
dimension, and new results for covariance and time-correlation matrices
|
260 |
Stochastic Runge–Kutta Lawson Schemes for European and Asian Call Options Under the Heston ModelKuiper, Nicolas, Westberg, Martin January 2023 (has links)
This thesis investigated Stochastic Runge–Kutta Lawson (SRKL) schemes and their application to the Heston model. Two distinct SRKL discretization methods were used to simulate a single asset’s dynamics under the Heston model, notably the Euler–Maruyama and Midpoint schemes. Additionally, standard Monte Carlo and variance reduction techniques were implemented. European and Asian option prices were estimated and compared with a benchmark value regarding accuracy, effectiveness, and computational complexity. Findings showed that the SRKL Euler–Maruyama schemes exhibited promise in enhancing the price for simple and path-dependent options. Consequently, integrating SRKL numerical methods into option valuation provides notable advantages by addressing challenges posed by the Heston model’s SDEs. Given the limited scope of this research topic, it is imperative to conduct further studies to understand the use of SRKL schemes within other models.
|
Page generated in 0.1139 seconds