• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 173
  • 48
  • 31
  • 13
  • 11
  • 9
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 356
  • 356
  • 123
  • 85
  • 68
  • 56
  • 52
  • 44
  • 44
  • 43
  • 39
  • 38
  • 35
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Approximation Of Continuously Distributed Delay Differential Equations

Gallage, Roshini Samanthi 01 August 2017 (has links)
We establish a theorem on the approximation of the solutions of delay differential equations with continuously distributed delay with solutions of delay differential equations with discrete delays. We present numerical simulations of the trajectories of discrete delay differential equations and the dependence of their behavior for various delay amounts. We further simulate continuously distributed delays by considering discrete approximation of the continuous distribution.
92

The Method of Mixed Monotony and First Order Delay Differential Equations / The Method of Mixed Monotony and First Order Delay Differential Equations

Khavanin, Mohammad 25 September 2017 (has links)
In this paper I extend the method of mixed monotony, to construct monotone sequences that converge to the unique solution of an initial value delay differential equation. / En este artículo se prueba una generalización del método de monotonía mixta, para construir sucesiones monótonas que convergen a la solución única de una ecuación diferencial de retraso con valor inicial.
93

Algoritmo baseado na equação diferencial para proteção rápida de linhas de transmissão / An algorithm based on the differential equation for fast protection of transmission lines

Renata Araripe de Macêdo 24 November 2000 (has links)
Este trabalho apresenta o desenvolvimento de um algoritmo baseado na modelagem do sistema de transmissão por meio de equações diferenciais, formuladas através dos parâmetros resistência e indutância da linha de transmissão a ser protegida. Nesta abordagem não é necessário que a entrada do algoritmo seja puramente senoidal, admitindo-se a presença de harmônicos e componentes CC presentes na falta como parte da solução do problema. Utilizou-se o software ATP para a modelagem do sistema elétrico estudado e a obtenção do conjunto de dados para análise e testes, permitindo-se a representação detalhada da linha de transmissão por meio das características dos condutores e suas respectivas disposições geométricas nas torres de transmissão, além da modelagem das diversas manobras e defeitos que os afetam, buscando-se uma aproximação com uma situação real. Com relação ao uso direto das equações diferenciais para a tarefa de proteção das linhas, constatou-se que sua aplicação não produz uma estimativa aceitável para ser usada em relés digitais por possuírem convergência em tempos normalmente superiores a dois ciclos. Assim, foi feita uma filtragem das respostas do algoritmo, proporcionando-se um diagnóstico mais rápido das estimativas. Para isso foi usado um filtro de mediana de 5ª ordem para o cálculo da localização da falta. Para todos os tipos de falta testados, a estimativa da localização da falta com o uso do referido filtro mostrou-se altamente satisfatória para a finalidade de proteção, convergindo em menos de um ciclo e meio de pós-falta, após a filtragem das estimativas, imprimindo maior velocidade de resposta para os relés digitais. / The present work shows the development of an algorithm based on the modeling of the transmission system utilizing differential equations. The differential equation for the line is solved having its resistance and inductance as parameters. In this approach there is no need for the algorithm inputs to be pure sinusoidal, allowing the presence of harmonic and DC components in the line as a part of the solution to the problem. The software ATP was utilized for the modeling of the electric system under study as well as data collection for analysis and tests. This representation allowed a detailed representation of the transmission line through the characteristics of the conductors and its geometrical disposition in the transmission towers, as well as the simulation of faults that usually affect the electric system, reproducing a realistic situation. The direct use of differential equations do not give an acceptable estimation as far as digital relays are concerned because they have convergence times over two cycles. In this sense, a 5th order median filter was utilized, providing faster diagnosis for the fault location estimation. The estimation of the fault location has proved to be a coherent criteria for the algorithm. For the fault types tested, the estimation for the fault location utilizing line parameters has shown itself highly satisfactory for protection purposes. This work has shown that the algorithm oulputs converge in less than 1 and a half cycles afler the fault occurrence, presenting a much faster response for digital relays.
94

On the method of lines for singularly perturbed partial differential equations

Mbroh, Nana Adjoah January 2017 (has links)
Magister Scientiae - MSc / Many chemical and physical problems are mathematically described by partial differential equations (PDEs). These PDEs are often highly nonlinear and therefore have no closed form solutions. Thus, it is necessary to recourse to numerical approaches to determine suitable approximations to the solution of such equations. For solutions possessing sharp spatial transitions (such as boundary or interior layers), standard numerical methods have shown limitations as they fail to capture large gradients. The method of lines (MOL) is one of the numerical methods used to solve PDEs. It proceeds by the discretization of all but one dimension leading to systems of ordinary di erential equations. In the case of time-dependent PDEs, the MOL consists of discretizing the spatial derivatives only leaving the time variable continuous. The process results in a system to which a numerical method for initial value problems can be applied. In this project we consider various types of singularly perturbed time-dependent PDEs. For each type, using the MOL, the spatial dimensions will be discretized in many different ways following fitted numerical approaches. Each discretisation will be analysed for stability and convergence. Extensive experiments will be conducted to confirm the analyses.
95

Hattendorff’s theorem and Thiele’s differential equation generalized

Messerschmidt, Reinhardt 20 February 2006 (has links)
Hattendorff's theorem on the zero means and uncorrelatedness of losses in disjoint time periods on a life insurance policy is derived for payment streams, discount functions and time periods that are all stochastic. Thiele's differential equation, describing the development of life insurance policy reserves over the contract period, is derived for stochastic payment streams generated by point processes with intensities. The development follows that by Norberg. In pursuit of these aims, the basic properties of Lebesgue-Stieltjes integration are spelled out in detail. An axiomatic approach to the discounting of payment streams is presented, and a characterization in terms of the integral of a discount function is derived, again following the development by Norberg. The required concepts and tools from the theory of continuous time stochastic processes, in particular point processes, are surveyed. / Dissertation (MSc (Actuarial Science))--University of Pretoria, 2007. / Insurance and Actuarial Science / unrestricted
96

Applications of Impulsive Differential Equations to the Control of Malaria Outbreaks and Introduction to Impulse Extension Equations: a General Framework to Study the Validity of Ordinary Differential Equation Models with Discontinuities in State

Church, Kevin January 2014 (has links)
Impulsive differential equations are often used in mathematical modelling to simplify complicated hybrid models. We propose an inverse framework inspired by impulsive differential equations, called impulse extension equations, which can be used as a tool to determine when these impulsive models are accurate. The linear theory is the primary focus, for which theorems analoguous to ordinary and impulsive differential equations are derived. Results explicitly connecting the stability of impulsive differential equations to related impulse extension equations are proven in what we call time scale consistency theorems. Opportunities for future research in this direction are discussed. Following the work of Smith? and Hove-Musekwa on malaria vector control by impulsive insecticide spraying, we propose a novel autonomous vector control scheme based on human disease incidence. Existence and stability of periodic orbits is established. We compare the implementation cost of the incidence-based control to a fixed-time spraying schedule. Hybrid control strategies are discussed.
97

Um algoritmo para simplificar sistemas de equações diferenciais que descrevem a cinética de reações químicas / An algorithm to simplify systems of differential equations that describe the kinetics of chemical reactions

Amanda Sayuri Guimarães 10 June 2016 (has links)
O estudo da evolução da concentração de elementos de uma reação química, conhecida como Cinética Química, é de extrema importância para a compreensão das complexas interações em sistemas biológicos. Uma maneira de descrever a cinética de uma reação química é utilizando um sistema de equações diferenciais ordinárias (EDOs). Uma vez que para resolver um sistema de equações diferenciais ordinárias pode ser uma tarefa difícil (ou mesmo inviável), métodos numéricos são utilizados para realizar simulações, ou seja, para obter concentrações aproximadas das espécies químicas envolvidas durante um determinado período de tempo. No entanto, quanto maior for o sistema simulado de EDOs, mais os métodos numéricos estão sujeitos a erros. Além disso, o aumento do tamanho do sistema muitas vezes resulta em simulações que são mais exigentes do ponto de vista computacional. Assim, o objetivo deste projeto de mestrado é o desenvolvimento de regras para simplificar os sistemas de equações diferenciais ordinárias que modelam a cinética de reações químicas e, portanto, a obtenção de um algoritmo para executar simulações numéricas de um modo mais rápido e menos propenso a erros. Mais do que diminuir o erro e o tempo de execução, esta simplificação possibilita o biólogo escolher a solução mais factível do ponto de vista de medida. Isso porque, a identificação dos sistemas (i.e., inferência dos parâmetros) requer que a concentração de todas as espécies químicas seja conhecida, ao menos em um certo intervalo de tempo. Contudo, em muitos casos, não é possível medir a concentração de todas as espécies químicas consideradas. Esta simplificação gera sistemas equivalentes ao original, mas que dispensa a utilização de certas concentrações de espécies químicas. Um sistema de equações diferenciais ordinárias pode ser simplificado considerando as relações de conservação de massa, que são equações algébricas. Além disso, no caso de reações enzimáticas, o sistema de equações diferenciais ordinárias pode ser simplificado pelo pressuposto de que a concentração do complexo enzima-substrato mantém-se constante, o que permite a utilização da equação de Michaelis-Menten. De todas as combinações possíveis das equações algébricas com as equações diferenciais, uma família de sistemas simplificados de EDOs foi construída, permitindo a escolha do sistema mais simples. Esta escolha segue um critério guloso que favorece a minimização do número de equações diferenciais e do número total de termos. As regras em desenvolvimento de simplificação dos sistemas de equações diferenciais ordinárias foram utilizados para projetar um algoritmo, que foi implementado usando a linguagem de programação Python. O algoritmo concebido foi testado utilizando instâncias artificiais. / The study of the evolution of the concentration of species in a chemical reaction, known as Chemical Kinetics, is of paramount importance for the understanding of complex interactions in biological systems. One way to describe the kinetics of a chemical reaction is using a system of ordinary differential equations (ODEs). Once to solve a system of ODEs can be a difficult (or even unfeasible) task, numerical methods are employed to carry out simulations, that is, to obtain approximated concentrations of the involved chemical species for a certain time frame. However, the larger is the simulated system of ODEs, the more numerical methods are subject to error. Moreover, the increase of the system size often results in simulations that are more demanding from the computational point of view. Thus, the objective is the development of rules to simplify systems of ODEs that models the kinetics of chemical reactions, hence obtaining an algorithm to execute numerical simulations in a faster way and less prone to error. More than decrease error and run time, this simplification allows the biologist to choose the most feasible solution from the point of view of measurement. This is because the identification of systems (i.e., inferring parameters) requires that the concentration of all chemical species is known, at least in a certain time interval. However, in many cases it is not possible to measure the concentration of all chemical species considered. This simplification creates systems equivalent to the original, but that does not require the use of certain concentrations of chemical species. A system of ODEs can be simplified considering the relations of mass conservation, which are algebraic equations. Furthermore, in the case of enzymatic reactions, the system of ODEs can be simplified under the assumption that the concentration of enzyme-substrate complex remains constant, which allows us to use the Michaelis-Menten equation. From all possible combinations of the algebraic equations with differential equations, a family of simplified systems of ODEs will be built, allowing the choice of a simplest system. This choice will follow a greedy criterion which favors the minimization of number of differential equations and the total number of terms. The rules under development to simplify systems of ODEs will be used to design an algorithm, which will be implemented using Python programming language. The designed algorithm will be tested using synthetic data.
98

Some Financial Applications of Backward Stochastic Differential Equations with jump : Utility, Investment, and Pricing

柏原, 聡, KASHIWABARA, Akira 23 March 2012 (has links)
博士(経営) / 85 p. / 一橋大学
99

Optimierung eines Mean-Variance Portfolios

Janke, Oliver 26 October 2017 (has links)
Diese Diplomarbeit untersucht die Optimierung eines Mean-Variance Portfolios auf einem vollständigen Markt unter der Bedingung, dass die Insolvenz des Investors ausgeschlossen ist. Hierbei wird die duale Methode (auch Martingalmethode genannt)
100

A second order Runge–Kutta method for the Gatheral model

Auffredic, Jérémy January 2020 (has links)
In this thesis, our research focus on a weak second order stochastic Runge–Kutta method applied to a system of stochastic differential equations known as the Gatheral Model. We approximate numerical solutions to this system and investigate the rate of convergence of our method. Both call and put options are priced using Monte-Carlo simulation to investigate the order of convergence. The numerical results show that our method is consistent with the theoretical order of convergence of the Monte-Carlo simulation. However, in terms of the Runge-Kutta method, we cannot accept the consistency of our method with the theoretical order of convergence without further research.

Page generated in 0.1346 seconds