• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 35
  • 17
  • 8
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 53
  • 48
  • 29
  • 22
  • 20
  • 17
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Complex Optical Fields Generation Using a Vectorial Optical Field Generator

Zhou, Sichao 18 May 2016 (has links)
No description available.
72

Diseño y caracterización experimental de sistemas de atrapamiento y manipulación de micro-objetos mediante técnicas ópticas, térmicas y acústicas

Muñoz Pérez, Francisco Misael 11 April 2024 (has links)
Tesis por compendio / [ES] La necesidad de confinar y manipular micro-objetos tiene aplicaciones en múltiples áreas de la ciencia y tecnología. Actualmente, existen diversas técnicas para lograr este objetivo, y una de las más destacadas es el uso de las llamadas pinzas ópticas, que se han convertido en una herramienta ampliamente utilizada en laboratorios de todo el mundo. Este trabajo de investigación se centra en el fascinante campo del atrapamiento y manipulación de micro-objetos, con un enfoque destacado en la combinación de elementos ópticos difractivos y la técnica de pinzas ópticas. Esta combinación permite un aumento de la versatilidad de los sistemas experimentales de pinzas ópticas. Los avances presentados en esta tesis tienen aplicaciones en una amplia gama de campos, desde la nanotecnología hasta la biología celular. Como lentes difractivas implementadas en los sistemas de pinzas ópticas, se introducen las lentes difractivas Kinoform basadas en la secuencia aperiódica m-Bonacci. Estas lentes permiten atrapar múltiples partículas simultáneamente y manipularlas tridimensionalmente en dos planos focales diferentes, lo que amplía significativamente las posibilidades de investigación y desarrollo en diversas disciplinas. Además, se aborda la generación de múltiples trampas ópticas mediante lentes Kinoform cuadrifocales basadas en otra secuencia aperiódica conocida como Silver Mean, permitiendo atrapar partículas en cuatro planos focales de manera simultánea. Este avance mejora significativamente la versatilidad de los sistemas de pinzas ópticas. Adicionalmente el uso de vórtices multiplexados en un sistema de pinzas ópticas, permite atrapar de manera independiente múltiples partículas y transferir momento angular. Estos avances abren nuevas posibilidades en la construcción de micromotores y aplicaciones de micro-ensamblaje. Un efecto asociado a las trampas ópticas es la generación de microburbujas, en la actualidad estas se han convertido en objeto de estudio debido a la facilidad de generación y a sus posibles aplicaciones como agentes de transporte de partículas o micro-objetos. Aprovechando este efecto en esta tesis se implementa una técnica de atrapamiento que emplea fuerzas termoforéticas en la captura y manipulación de microburbujas en líquidos. Esto constituye otro avance importante en el campo del atrapamiento tridimensional. Por último, se desarrolla un laboratorio virtual utilizando COMSOL Multiphysics para simular el atrapamiento acústico, lo que permite a los estudiantes interactuar con el sistema y comprender mejor este fenómeno. Este enfoque educativo proporciona herramientas valiosas para la comprensión y análisis de la manipulación de partículas, lo que beneficia a los estudiantes de pre-grado y grado interesados en este campo. En conjunto, todos estos avances representan contribuciones significativas en el campo del atrapamiento y manipulación de partículas, en particular a través de las pinzas ópticas, promoviendo el progreso tecnológico y científico en diversas disciplinas y brindando oportunidades educativas para futuras generaciones de investigadores y científicos. A lo largo del desarrollo de esta tesis, se han creado nuevos elementos difractivos que superan ciertas limitaciones y aumentan las capacidades de las pinzas ópticas, abriendo nuevas perspectivas de aplicación para tecnologías preexistentes. / [CA] La necessitat de confinar i manipular microobjectes té aplicacions a múltiples àrees de la ciència i la tecnologia. En l'actualitat, hi ha diverses tècniques per assolir aquest objectiu, i una de les més destacades és l'ús de les anomenades pinces òptiques, que han esdevingut una eina molt utilitzada en laboratoris de tot el món. Aquest treball de recerca se centra en el fascinant camp de la captura i la manipulació de microobjectes, destacant la combinació d'elements òptics difractius i la tècnica de les pinces òptiques. Aquesta combinació permet augmentar la versatilitat dels sistemes experimentals de pinces òptiques. Els avenços presentats en aquesta Tesi tenen aplicacions en una àmplia gamma de camps, des de la nanotecnologia a la biologia cel·lular. Com a lents difractives implementades en sistemes de pinces òptiques, es presenten les lents difractives Kinoform basades en la seqüència aperiòdica m-Bonacci. Aquestes lents permeten atrapar simultàniament múltiples partícules i manipular-les tridimensionalment en dos plans focals diferents, fet que amplia significativament les possibilitats de recerca i desenvolupament en diverses disciplines. A més, s'aborda la generació de múltiples trampes òptiques utilitzant lents Kinoform quadrifocals basades en una altra seqüència aperiòdica coneguda com a Silver Mean, que permet atrapar partícules en quatre plans focals simultàniament. Aquest avenç millora significativament la versatilitat dels sistemes de pinces òptiques. A més, l'ús de vòrtexs multiplexats en un sistema de pinces òptiques permet atrapar múltiples partícules de manera independent i transferir el moment angular. Aquests avenços obren noves possibilitats en la construcció de micromotors i aplicacions de microassemblatge. Un efecte associat a les trampes òptiques és la generació de microbombolles, actualment aquestes s'han convertit en objecte d'estudi a causa de la facilitat de generació i de les seves potencials aplicacions com a agents de transport de partícules o microobjectes. Aprofitant aquest efecte, aquesta Tesi implementa una tècnica d'atrapament que utilitza forces termoforètiques en la captura i manipulació de microbombolles en líquids. Això constitueix un altre avenç important en el camp de l'atrapament tridimensional. Finalment, es desenvolupa un laboratori virtual utilitzant COMSOL Multiphysics per simular l'atrapament acústic, cosa que permet als estudiants interactuar amb el sistema i comprendre millor aquest fenomen. Aquest enfocament educatiu proporciona eines valuoses per a la comprensió i l'anàlisi de la manipulació de partícules, cosa que beneficia els estudiants de grau i postgrau interessats en aquest camp. En conjunt, tots aquests avenços representen contribucions significatives al camp de l'atrapament i la manipulació de partícules, particularment a través de pinces òptiques, promovent el progrés tecnològic i científic en diverses disciplines i proporcionant oportunitats educatives per a futures generacions d'investigadors i científics. Al llarg del desenvolupament d'aquesta Tesi, s'han creat elements difractius nous que superen certes limitacions i augmenten les capacitats de les pinces òptiques, obrint noves perspectives d'aplicació per a tecnologies preexistents. / [EN] The need to confine and manipulate micro-objects has applications in multiple areas of science and technology. Currently, there are several techniques to achieve this goal, and one of the most prominent is the use of the so-called optical tweezers, which have become a widely used tool in laboratories around the world. This research work focuses on the fascinating field of micro-object capture and manipulation, highlighting the combination of diffractive optical elements and the optical tweezers technique. This combination allows to increase the versatility of the experimental optical tweezers systems. The advances presented in this thesis have applications in a wide range of fields, from nanotechnology to cell biology. As diffractive lenses implemented in optical tweezers systems, Kinoform diffractive lenses based on the aperiodic m-Bonacci sequence are presented. These lenses allow multiple particles to be trapped simultaneously and manipulated three-dimensionally in two different focal planes, which significantly expands the possibilities for research and development in various disciplines. In addition, the generation of multiple optical traps is addressed using quadrifocal Kinoform lenses based on another aperiodic sequence known as Silver Mean, which allows particles to be trapped in four focal planes simultaneously. This advance significantly improves the versatility of optical tweezer systems. In addition, the use of multiplexed vortices in an optical tweezer system allows multiple particles to be trapped independently and angular momentum to be transferred. These advances open up new possibilities in micromotor construction and microassembly applications. One effect associated with optical traps is the generation of microbubbles, currently these have become an object of study due to the ease of generation and their potential applications as transport agents for particles or micro-objects. Taking advantage of this effect, this thesis implements an trapping technique that employs thermophoretic forces in the capture and manipulation of microbubbles in liquids. This constitutes another important advance in the field of three-dimensional trapping. Finally, a virtual laboratory is developed using COMSOL Multiphysics to simulate acoustic trapping, allowing students to interact with the system and better understand this phenomenon. This educational approach provides valuable tools for the understanding and analysis of particle manipulation, benefiting undergraduate and graduate students interested in this field. Taken together, all of these advances represent significant contributions to the field of particle trapping and manipulation, particularly through optical tweezers, promoting technological and scientific progress in various disciplines and providing educational opportunities for future generations of researchers and scientists. Throughout the development of this thesis, new diffractive elements have been created that overcome certain limitations and increase the capabilities of optical tweezers, opening new application perspectives for pre-existing technologies. / We acknowledge the financial support from Ministerio de Ciencia e Innovación (grants PID2019-107391RB-I00 and PID2022-1142407NB-I00), Generalitat Valenciana (grant PROMETEO/2019/048 and CI-PROM/2022/30), and Universitat Politècnica de València (PAID-01-20-25), Spain. We acknowledge the financial support from CONACyT (grant A1-S-28440). / Muñoz Pérez, FM. (2024). Diseño y caracterización experimental de sistemas de atrapamiento y manipulación de micro-objetos mediante técnicas ópticas, térmicas y acústicas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203436 / Compendio
73

Aplicação da holografia computacional para o cálculo de elementos ópticos difrativos / not available

Roberto, Luciana Brassolatti 13 April 2000 (has links)
A Holografia Computacional é uma técnica bem conhecida que permite a realização de uma grande variedade de Elementos Ópticos Difrativos. Elementos Ópticos Difrativos são dispositivos ópticos \"moldadores\" de onda projetados com base nas propriedades de difração de suas interfaces micro-estruturadas (ou de seus variáveis índices de refração). Considerando-se sua vasta escala de tecnologias de integração e repetição, usadas na fabricação de circuitos micro-eletrônicos, eles possuem um baixo custo de fabricação. Neste trabalho, o Algoritmo Iterativo da Transformada de Fourier foi aplicado para o cálculo de hologramas de Fourier binários destinados à modelagem da luz laser. A finalidade foi simular as propriedades dos elementos, considerando algumas distribuições luminosas desejadas, e gerar o \"layout\" das máscaras de fabricação destes hologramas. Urna das implementações realizadas, para que os resultados fossem melhorados durante as iterações, foi o cálculo de uma correção na janela de reconstrução que considera o erro de amplitude da reconstrução anterior. A possibilidade de visualizar as reconstruções binárias também é demonstrada, onde o olho humano é tratado como uma lente de Fourier. Um dispositivo óptico difrativo híbrido com perfil binário e contínuo, capaz de dividir um feixe de laser monocromático em um número arbitrário de linhas com um alto ângulo também é apresentado. Hologramas de Fourier de fase contínua e com 4 níveis de fase são implementados utilizando-se o Algoritmo Iterativo da Transformada de Fourier. Cálculos para a geração de hologramas de fase de Fresnel são realizados, combinando o Algoritmo Iterativo da Transformada de Fourier com a propagação da luz no espaço livre. / The Computer Holography is a well known technique that enables one to realize a wide range of Diffractive Optical Elements. Diffractive Optical Elements are optical waveshaping devices designed with base on the diffraction properties of their microstructured interfaces (or refractive-index gradients). They have potential low fabrication cost, considering their very large scale integration and replication technologies used in the fabrication of microelectronics circuits. In this work, the Iterative Fourier Transform Algorithm was applied for the calculation of binary computer generated Fourier holograrns for laser beam shaping. The purpose was to simulate the elements proprieties considering some desired light distributions and to generate the fabrication masks Iayout of these holograms. One of the implementations, performed to improve the results during the iterations, was the calculation of a amplitude correction in the reconstruction window that considers the amplitude error from the previous reconstruction. The possibility to visualize the binary holograms reconstructions is also demonstred, where the human eye is treated as a Fourier lens. A hybrid binary and continuous profile diffractive optical device capable of splitting a monochromatic laser beam into an arbitrary number of tines over wide angle is also presented. Continuous phase and four phase levels Fourier holograms are implemented using the lterative Fourier Transform Algorithm. Fresnel phase holograms calculations are performed by combining the Iterative Fourier Transform Algorithm with the free space light propagation.
74

Aplicação da holografia computacional para o cálculo de elementos ópticos difrativos / not available

Luciana Brassolatti Roberto 13 April 2000 (has links)
A Holografia Computacional é uma técnica bem conhecida que permite a realização de uma grande variedade de Elementos Ópticos Difrativos. Elementos Ópticos Difrativos são dispositivos ópticos \"moldadores\" de onda projetados com base nas propriedades de difração de suas interfaces micro-estruturadas (ou de seus variáveis índices de refração). Considerando-se sua vasta escala de tecnologias de integração e repetição, usadas na fabricação de circuitos micro-eletrônicos, eles possuem um baixo custo de fabricação. Neste trabalho, o Algoritmo Iterativo da Transformada de Fourier foi aplicado para o cálculo de hologramas de Fourier binários destinados à modelagem da luz laser. A finalidade foi simular as propriedades dos elementos, considerando algumas distribuições luminosas desejadas, e gerar o \"layout\" das máscaras de fabricação destes hologramas. Urna das implementações realizadas, para que os resultados fossem melhorados durante as iterações, foi o cálculo de uma correção na janela de reconstrução que considera o erro de amplitude da reconstrução anterior. A possibilidade de visualizar as reconstruções binárias também é demonstrada, onde o olho humano é tratado como uma lente de Fourier. Um dispositivo óptico difrativo híbrido com perfil binário e contínuo, capaz de dividir um feixe de laser monocromático em um número arbitrário de linhas com um alto ângulo também é apresentado. Hologramas de Fourier de fase contínua e com 4 níveis de fase são implementados utilizando-se o Algoritmo Iterativo da Transformada de Fourier. Cálculos para a geração de hologramas de fase de Fresnel são realizados, combinando o Algoritmo Iterativo da Transformada de Fourier com a propagação da luz no espaço livre. / The Computer Holography is a well known technique that enables one to realize a wide range of Diffractive Optical Elements. Diffractive Optical Elements are optical waveshaping devices designed with base on the diffraction properties of their microstructured interfaces (or refractive-index gradients). They have potential low fabrication cost, considering their very large scale integration and replication technologies used in the fabrication of microelectronics circuits. In this work, the Iterative Fourier Transform Algorithm was applied for the calculation of binary computer generated Fourier holograrns for laser beam shaping. The purpose was to simulate the elements proprieties considering some desired light distributions and to generate the fabrication masks Iayout of these holograms. One of the implementations, performed to improve the results during the iterations, was the calculation of a amplitude correction in the reconstruction window that considers the amplitude error from the previous reconstruction. The possibility to visualize the binary holograms reconstructions is also demonstred, where the human eye is treated as a Fourier lens. A hybrid binary and continuous profile diffractive optical device capable of splitting a monochromatic laser beam into an arbitrary number of tines over wide angle is also presented. Continuous phase and four phase levels Fourier holograms are implemented using the lterative Fourier Transform Algorithm. Fresnel phase holograms calculations are performed by combining the Iterative Fourier Transform Algorithm with the free space light propagation.
75

Algorithms for Coherent Diffractive Imaging with X-ray Lasers

Daurer, Benedikt J. January 2017 (has links)
Coherent diffractive imaging (CDI) has become a very popular technique over the past two decades. CDI is a "lensless" imaging method which replaces the objective lens of a conventional microscope by a computational image reconstruction procedure. Its increase in popularity came together with the development of X-ray free-electron lasers (XFELs) which produce extremely bright and coherent X-rays. By facilitating these unique properties, CDI enables structure determination of non-crystalline samples at nanometre resolution and has many applications in structural biology, material science and X-ray optics among others. This work focuses on two specific CDI techniques, flash X-ray diffractive imaging (FXI) on biological samples and X-ray ptychography. While the first FXI demonstrations using soft X-rays have been quite promising, they also revealed remaining technical challenges. FXI becomes even more demanding when approaching shorter wavelengths to allow subnanometre resolution imaging. We described one of the first FXI experiments using hard X-rays and characterized the most critical components of such an experiment, namely the properties of X-ray focus, sample delivery and detectors. Based on our findings, we discussed experimental and computational strategies for FXI to overcome its current difficulties and reach its full potential. We deposited the data in the Coherent X-ray Database (CXIDB) and made our data analysis code available in a public repository. We developed algorithms targeted towards the needs of FXI experiments and implemented a software package which enables the analysis of diffraction data in real time. X-ray ptychography has developed into a very useful tool for quantitative imaging of complex materials and has found applications in many areas. However, it involves a computational reconstruction step which can be slow. Therefore, we developed a fast GPU-based ptychographic solver and combined it with a framework for real-time data processing which already starts the ptychographic reconstruction process while data is still being collected. This provides immediate feedback to the user and allows high-throughput ptychographic imaging. Finally, we have used ptychographic imaging as a method to study the wavefront of a focused XFEL beam under typical FXI conditions.  We are convinced that this work on developing strategies and algorithms for FXI and ptychography is a valuable contribution to the development of coherent diffractive imaging.
76

Studies of novel beam shapes and applications to optical manipulation

Morris, Jill E. January 2010 (has links)
In this thesis an investigation into novel beams and optical manipulation is presented. Sculpting the phase profile of a Gaussian beam can result in the generation of a beam with unusual properties. Described in this thesis are optical vortices, Bessel beams and Airy beams. Additionally, optical manipulation was investigated using both novel beams and Gaussian beams with an emphasis on the use of a broad bandwidth laser source. The generation of multiple broadband optical trap sites was explored, and the transfer of orbital angular momentum from a broadband optical vortex to trapped microspheres was demonstrated. An introduction to the thesis and an overview of laser sources used for optical manipulation is presented in Chapters 1 and 2. Chapters 3 and 4 detail the background of optical manipulation and novel beam shaping. In Chapter 5, an investigation into the generation of multiple broadband optical trap sites is presented. Chapter 6 details the use of a ‘white light’ optical vortex to transfer orbital angular momentum to trapped microspheres. Chapter 7 presents the results of an investigation carried out using a supercontinuum source to characterise the wavelength and spatial coherence dependence of the properties of an optical Airy beam. The use of a monochromatic laser to generate Bessel beams that propagate along curved trajectories is detailed in Chapter 8. Chapter 9 summarises the thesis and suggests future work.
77

Directional organic light-emitting diodes using photonic microstructure

Zhang, Shuyu January 2014 (has links)
This thesis describes investigations into the optical and device design of organic light-emitting diodes (OLEDs) with the aim of exploring the factors controlling the spatial emission pattern of OLEDs and developing novel OLEDs with directional emission by applying wavelength-scale photonic microstructure. The development of directional OLEDs was broken down into two steps: the development of efficient narrow linewidth OLEDs and the integration of wavelength-scale photonic microstructures into narrow linewidth OLEDs. The narrow linewidth OLEDs were developed using europium (Eu) complexes. The electrical optimisation of solution-processed Eu-based OLEDs using commercially available materials was investigated. The optimised Eu-based OLEDs gave an external quantum efficiency of 4.3% at a display brightness of 100 cd/m². To our knowledge, this is the highest efficiency reported for solution-processed Eu-based OLED devices, and the efficiency roll-off has been reduced compared with other reported references. Photonic microstructures were applied to develop directional OLEDs using the efficient Eu-based OLEDs. Two contrasting strategies were used. One was to embed photonic microstructures into Eu-based OLEDs, the other was to couple photonic microstructures externally onto the devices. The microstructured devices developed by the former strategy boosted the emitted power in desired angles in both s- and p-polarisations and doubled the fraction of emission in an angle range of 4⁰. The devices developed by the external coupling strategy achieved even higher directionality and the out-coupled emission was a confined beam with easy control of beam steering. Around 90% of the emitted power was confined in an angular range of 20⁰ in the detection plane. The optical properties can be optimised independently without compromising the electrical properties of devices, which gives major advantages in terms of effectiveness and versatility. Optical models were also developed to investigate the out-coupling mechanism of various trapped modes and develop OLEDs with stronger directionality.
78

Imageur de Fresnel UV : préparation d'une mission probatoire sur la Station spatiale internationale / UV Fresnel imager : preparation of a probatory mission on the international space station

Roux, Wilhem 10 April 2018 (has links)
Cette thèse a été réalisée entre 2014 et 2017 en vue de la préparation d'une mission probatoire du projet Imageur de Fresnel permettant de réaliser des observations astronomiques dans le domaine ultraviolet (UV). Il s'agit d'un modèle de télescope spatial diffractif imaginé et développé principalement par Laurent Koechlin depuis 2004. Son optique primaire est une grille de Fresnel, optique très légère (de l'ordre du kilogramme) parfaitement adaptée pour servir à une mission d'observation spatiale de très grande envergure, utilisant le principe des réseaux zonés de Fresnel. Afin de prouver la faisabilité d'une mission probatoire sur la Station Spatiale Internationale (ISS) fonctionnant dans l'ultraviolet, l'instrument doit d'abord faire la preuve de ses performances au sol. Le premier objectif a donc été de concevoir un nouveau prototype sol adapté à l'observation dans l'ultraviolet. Cela a nécessité la définition d'une nouvelle configuration de l'ensemble du système imageur, ainsi que la réalisation de nouvelles optiques, et en particulier celle du correcteur du chromatisme induit par la grille d'un nouveau genre. Il s'agit d'un miroir de Fresnel blazé concave, qui a été réalisé pour la première fois avec succès. Le second a été de perfectionner le modèle de grille de Fresnel, afin d'en améliorer ses qualités de haut contraste en conservant sa résolution maximale. Cela s'est fait par la modification des barreaux de maintien des anneaux, ainsi que par l'application d'une apodisation adaptée à cette optique particulière. La nouvelle grille du prototype d'une largeur de 65 mm seulement, permet théoriquement d'atteindre une dynamique de 10^6 à 15 resels (éléments de résolution), probablement meilleure avec la grille qui sera utilisée pour la mission probatoire, et bien supérieure encore avec les grilles de grandes dimensions si un jour elles sont utilisées pour l'astrophysique UV. / This Ph.D. thesis work was made between 2014 and 2017, in order to prepare a probatory mission of the Fresnel Imager for astronomical observations in the ultraviolet (UV) domain. The Fresnel Imager is a concept of diffractive telescope created and developed mainly by Laurent Koechlin since 2004. Its primary optics is a Fresnel grid: a very light weight optics (in the range of kilograms) using the principle of Fresnel zone plates. Fresnel arrays are adapted to large apertures in space. In order to prove the feasibility of a probatory mission on the International Space Station (ISS), the instrument has first to prove its performances on the ground. The initial goal of my thesis was to conceive a new prototype adapted to UV. This required a new configuration of the entire imaging system, as well as the realization of new optics, particularly those correcting the chromatism induced by that new kind of diffractive imaging. This chromatic corrector is a concave blazed Fresnel mirror, which has been successfully realized for the first time. The second goal was to improve the design of the Fresnel grid, in order to enhance its high contrast performances while preserving its diffraction-limited resolution. This was obtained by modifying the setup which holds the rings in place, as well as by the application of an apodization adapted to this particular optics. The new Fresnel grid in the prototype is 65 mm x 65 mm only, but its point spread function reaches a dynamic range of 10^6 at 15 resels (resolution element) from center. This will be further improved when a slightly larger array planned for the probatory mission on the ISS. Later, space missions could feature Fresnel grids several meters in size, yielding diffraction-limited images in the UV.
79

Laboratory soft x-ray microscopy and tomography

Bertilson, Michael January 2011 (has links)
Soft x-ray microscopy in the water-window (λ = 2.28 nm – 4.36 nm) is based on zone-plate optics and allows high-resolution imaging of, e.g., cells and soils in their natural or near-natural environment. Three-dimensional imaging is provided via tomographic techniques, soft x-ray cryo tomography. However, soft x-ray microscopes with such capabilities have been based on large-scale synchrotron x‑ray facilities, thereby limiting their accessibility for a wider scientific community. This Thesis describes the development of the Stockholm laboratory soft x-ray microscope to three-dimensional cryo tomography and to new optics-based contrast mechanisms. The microscope relies on a methanol or nitrogen liquid-jet laser-plasma source, normal-incidence multilayer or zone-plate condenser optics, in-house fabricated zone-plate objectives, and allows operation at two wavelengths in the water-window, λ = 2.48 nm and λ = 2.48 nm. With the implementation of a new state-of-the-art normal-incidence multilayer condenser for operation at λ = 2.48 nm and a tiltable cryogenic sample stage the microscope now allows imaging of dry, wet or cryo-fixed samples. This arrangement was used for the first demonstration of laboratory soft x-ray cryo microscopy and tomography. The performance of the microscope has been demonstrated in a number of experiments described in this Thesis, including, tomographic imaging with a resolution of 140 nm, cryo microscopy and tomography of various cells and parasites, and for studies of aqueous soils and clays. The Thesis also describes the development and implementation of single-element differential-interference and Zernike phase-contrast zone-plate objectives. The enhanced contrast provided by these optics reduce exposure times or lowers the dose in samples and are of major importance for harder x-ray microscopy. The implementation of a high-resolution 50 nm compound zone-plate objective for sub-25-nm resolution imaging is also described. All experiments are supported by extensive numerical modelling for improved understanding of partially coherent image formation and stray light in soft x-ray microscopes. The models are useful tools for studying effects of zone plate optics or optical design of the microscope on image formation and quantitative accuracy in soft x-ray tomography. / QC 20110221
80

Diffractive Optics Near-field Laser Lithography for Fabrication of 3-dimensional Periodic Nanostructures

Chanda, Debashis 23 September 2009 (has links)
The main objective of the present research work is to fabricate three dimensional photonic nanostructures in photo-sensitive polymers using a novel diffractive optical element (DOE) based lithography technique. A diffractive optical element is a promising alternative device for 3D fabrication where one DOE creates multiple laser beams in various diffraction orders that are inherently phase-locked and stable for reproducible creation of 3D near-field diffraction patterns from a single laser beam. These near-field patterns are captured inside a photosensitive material like photoresist to fabricate 3D photonic crystal templates. We have demonstrated fabrication of a wide range of 3D structures having different crystal symmetries and different relative crystal axis ratios. The present work has provided 3D photonic crystal nanostructures with uniform optical and structural properties over large sample area (~3-4 mm diameter) and through large 15-50 micron thickness with large number of layers (> 40) having period 550 nm - 650 nm and feature sizes between 200 nm and 300 nm. The short exposure time and small number of process steps shows promise for scaling to very large volume fabrication, dramatically improving the throughput, quality and structural uniformity of 3D periodic nanostructures, especially over that provided by tedious and costly semiconductor processing technology. The diffractive optics lithography is a parallel processing method that is easily scalable to generate centimeter-scale 3D nanostructures having large number of layers in several seconds. Due to low refractive index contrasts these polymer templates possess partial stopgaps along several crystallographic directions which can be practically used in several device or sensor applications where complete bandgap is not necessary. The potential usefulness of these partial stopbands for refractive index sensing of liquids has been demonstrated. These low refractive index polymer structures have been inverted with amorphous silica to convert a "soft" polymer structure to a robust "hard" structure. Further, few preliminary tests were done in fabricating 3D nanostructures into micro-fluidic channels for potential chromatography applications. The practical merits of this 3D fabrication technique will enable new practical manufacturing methods for optical and MEMS applications of 3D micro and nano structures.

Page generated in 0.0903 seconds