Spelling suggestions: "subject:"diffuse flux"" "subject:"diffused flux""
1 |
Astrophysical neutrinos at the low and high energy frontiersJanuary 2013 (has links)
abstract: For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino flux is ∼ 0.10 – 0.59 /cm2/s at 99% confidence level, which is 5 times lower than the Super-Kamiokande 2012 upper limit of 3.0 /cm2/s, above energy threshold of 17.3 MeV. With a Megaton scale water detector, 40 events could be detected above the threshold per year. In addition, the detectability of neutrino bursts from direct black hole forming collapses (failed supernovae) at Megaton detectors is calculated. These neutrino bursts are energetic and with short time duration, ∼ 1s. They could be identified by the time coincidence of N ≥2 or N ≥3 events within 1s time window from nearby (4 – 5 Mpc) failed supernovae. The detection rate of these neutrino bursts could get up to one per decade. This is a realistic way to detect a failed supernova and gives a promising method for studying the physics of direct black hole formation mechanism. Finally, the absorption of ultra high energy (UHE) neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel, is discussed. Results are applied to serval models of UHE neutrino sources. Suppression effects are strong for sources that extend beyond z ∼ 10. This provides a fascinating probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10 – 100. Ultimately this research will examine the detectability of DSNB, neutrino bursts from failed supernovae and absorption effects in the neutrino spectrum. / Dissertation/Thesis / Ph.D. Physics 2013
|
2 |
A search for particle showers at the edge of IceCube’s instrumented volumeStößl, Johannes Achim 02 August 2017 (has links)
Unter den Methoden zur Suche nach Neutrino Ereignissen in IceCube
versprechen Suchen nach Teilchenschauern, sogenannten Kaskaden eine
gute Energieauflösung und einen verhätlnismässig geringen atmosphärischen Untergrund. Dadurch erreichen solche Suchen eine hohe Sensitivität für einen extraterrestrischen Neutrino Fluss. Bisher beschränkte sich die Suche nach solchen Ereignissen auf solche in einer inneren Region des IceCube Detektors. Das Detektorvolumen am Rand wurde bisher benutzt um den Untergrund von einfallenden atmosphärischen Muonen zu Unterdrücken. Diese Dissertation präsentiert eine Analyse von 2 Jahren IceCube Daten und demonstriert die Möglichkeit, diese Veto Region für die Suche nach kaskadenartigen Ereignissen zu nutzen. Dadurch wird das nutzbare Detektorvolumen um « 80% vergrößert und die Statistik im hochenergetischen Bereich des Neutrino Spektrums durch das Hinzufügen von 18 Neutrino Kandidaten im Energiebereich von 34 - 578 TeV erhöht. Das Ergebnis ist in Übereinstimmung mit dem etablierten Nachweis eines extraterrestrischen Neutrino Flusses, eine reine Untergrund Hypothese kan mit 2.7 sigma verworfen werden und die Daten favorisieren einen extraterrestrischen Neutrino Fluss mit einem ungebrochen Potenzgesetz mit einem Index von γ ^ 2.50+-0.28 in guter Übereinstimmung mit bisherigen Ergebnissen von IceCube. / Among the analysis strategies used in IceCube, searches for neutrinoinduced particle showers, so called cascades, provide good energy resolution and a relative low atmospheric background. Therefore, they provide large sensitivity to the extraterrestrial neutrino flux. Previously, these searches have been constrained to neutrino interactions in a center region of the instrumented volume. The volume at the border and surrounding the detector was needed to veto the incident atmospheric muon background. This dissertation presents an analysis of two years of IceCube data and demonstrates the feasibility of using the veto region for cascade searches. This increases the usable detector volume by « 80% and improves the statistic in the high-energy tail of the neutrino spectrum by adding 18 neutrino candidates in the energy range from 34 to 576 TeV. The result is supports the established evidence for the extraterrestrial neutrino flux by rejecting the pure atmospheric background hypothesis at the 2.7 sigma level, the data prefers an extraterrestrial neutrino flux with a featureless power law with an index of γ^2.50+-0.28 well in agreement with previous IceCube results.
|
3 |
Investigation of all-flavour neutrino fluxes with the IceCube detector using the cascade signatureSchönwald, Arne 09 May 2016 (has links)
Das Ziel dieser Dissertation ist die Suche nach dem astrophysikalischen Neutrinofluss in einem IceCube-Datensatz bestehend aus 335 Tagen. IceCube ist ein 1 km$^{3}$ gro{\ss}er Neutrinodetektor, welcher sich am S{\"u}dpol befindet und aus 86 in das Eis eingefrorenen Trossen besteht, von denen jede mit 60 Digitalen Optischen Photomultipliern (DOM) best{\"u}ckt ist. Der Detektor befand sich noch in der Konstruktionsphase, daher bestand er nur aus 59 Trossen (IC59), als die Daten f{\"u}r diese Analyse gewonnen wurden.\newline Die hier behandelte Analysemethode ist empfindlich f{\"u}r alle drei Neutrinoarten. Wenn Neutrinos mit den im Eis vorhandenen Atomkernen wechselwirken, werden geladene Teilchen erzeugt, welche Tscherenkow-Strahlung aussenden, die dann von den DOM registriert und zur Rekonstruktion der Neutrinowechselwirkung verwendet wird. Diese Neutrinoereignisse m{\"u}ssen aus einem gro{\ss}en Untergrund von atmosph{\"a}rischen Myonen, der $10^{8}$ mal mehr Myonen als Neutrinos auf Trigger-Level enth{\"a}lt, gefiltert werden. Atmosph{\"a}rische und astrophysikalische Neutrinos k{\"o}nnen nur auf statistischem Wege auf der Grundlage ihrer rekonstruierten Energien unterschieden werden.\newline Um eine verl{\"a}ssliche Vorhersage f{\"u}r atmosph{\"a}rische Myonen in der finalen Filterstufe zu erreichen, wurde eine gro{\ss}e Anzahl von Myonen simuliert. Die vorgestellte Analyse war die erste, welche eine livetime von {\"u}ber einem Jahr f{\"u}r die Simulation von atmosph{\"a}rischen Myonen erreicht hat (f{\"u}r $E \geq 10$ TeV).\newline Eine erste Analyse z{\"a}hlte die Ereignisse mit einer Energie von $E>38$ TeV und fand 8 Ereignisse mit Energien zwischen 39 TeV und 67 TeV bei einer Untergrunderwartung von $3.6\pm 0.3$ Ereignissen. Dieser {\"U}berschuss wurde mit Hilfe eines Likelihood-Fit mit einer Energieschwelle von 10 TeV genauer untersucht. Es war kein astrophysikalischer Neutrinofluss n{\"o}tig, um den {\"U}berschuss zu beschreiben. Stattdessen wurde der {\"U}berschuss von einer h{\"o}heren Normierung des atmosph{\"a}rischen Neutrinoflusses absorbiert. Wenn keine weiteren Einschr{\"a}nkungen von unabh{\"a}ngigen Messungen oder Modellen des atmosph{\"a}rischen Neutrinoflusses verwendet werden, kann eine 90\% obere Grenze f{\"u}r den astrophysikalischen Neutrinofluss aller Neutrinoarten von $E^{2}\Phi_{astro,\;ul}=1.7\cdot 10^{-8} {\rm GeV}{\rm s}^{-1}{\rm sr}^{-1}{\rm cm}^{-2}$ im Energiebereich von $20\;{\rm TeV} \leq E \leq 3.0\;{\rm PeV}$ berechnet werden. Diese obere Grenze auf den Neutrinofluss liegt deutlich unter denen vorheriger IceCube-Analysen und ist kleiner als der sp{\"a}ter entdeckte astrophysikalische Neutrinofluss. Der atmosph{\"a}rischen Neutrinofluss, der im gleichen Fit bestimmt wurde, liegt deutlich {\"u}ber Modellvorhersagen basierend auf vor kurzem gewonnenen Messdaten. Wenn der atmosph{\"a}rische Neutrinofluss auf das Intervall dieser Modellvorhersagen beschr{\"a}nkt wird, ergibt sich eine obere Grenze f{\"u}r den astrophysikalischen Neutrinofluss aller Neutrinoarten von $E^{2}\Phi_{astro,\;ul}=3.2\cdot 10^{-8} {\rm GeV}{\rm s}^{-1}{\rm sr}^{-1}{\rm cm}^{-2}$ im Energiebereich von $20\;{\rm TeV} \leq E \leq 3.0\;{\rm PeV}$, was vertr{\"a}glich mit dem mittlerweile von IceCube gemessenen Neutrinofluss ist, welcher mit einer Analyse mit zwei Jahre Messzeit des fertiggestellten Ice-Cube-Detektors bestimmt wurde. / This thesis presents a search for the diffuse astrophysical neutrino flux in 335 days of IceCube data. IceCube is a 1 km$^{3}$ neutrino detector located at the South Pole, consisting of 86 strings, each equipped with 60 Digital Optical Photomultipliers (DOMs), frozen in the ice. The detector was still in construction when the data used in this analysis was taken, therefore only 59 strings were available (IC59).\newline The analysis presented here is sensitive to all three neutrino flavors. Neutrinos interacting with nuclei in the ice produce charged particles which emit Cherenkov light. This light is recorded by the DOMs and used for the event reconstruction. These neutrino events must be extracted from the huge background of atmospheric muons, which is $10^{8}$ times more common than neutrino events at trigger level. Finally, atmospheric and astrophysical neutrinos need to be distinguished statistically, based on the reconstructed neutrino energies.\newline To obtain a robust prediction of atmospheric muon events at the final level of the event selection, a huge simulation sample of atmospheric muons has been produced. This analysis was the first to achieve a livetime of more than one year of simulated atmospheric muon events with $E \geq 10$ TeV.\newline A first analysis counting the number of events with an energy $E>38$ TeV found 8 events with energies between 39 TeV and 67 TeV for a background prediction of $3.6\pm 0.3$ events. This excess was further investigated with a maximum likelihood fit with an energy threshold of 10 TeV. No astrophysical neutrino flux was required to describe the excess in the data. Instead, it was absorbed by a higher normalization of the atmospheric neutrino flux. If no constraints from independent measurements or models of the atmospheric neutrino flux are applied, a 90\% upper limit on the all-flavor astrophysical neutrino flux of $E^{2}\Phi_{astro,\;ul}=1.7\cdot 10^{-8} {\rm GeV}{\rm s}^{-1}{\rm sr}^{-1}{\rm cm}^{-2}$ in the energy range of $20\;{\rm TeV} \leq E \leq 3.0\;{\rm PeV}$ can be derived. This upper limit is considerably lower than earlier IceCube limits, and lower than the astrophysical neutrino flux discovered later. However, the atmospheric flux that is obtained in the same fit is considerably higher than model predictions based on recent measurement. If the atmospheric flux is constrained to the range of these model predictions, the upper limit is $E^{2}\Phi_{astro,\;ul} = 3.2\cdot 10^{-8}\; {\rm GeV}{\rm s}^{-1}{\rm sr}^{-1}{\rm cm}^{-2}$, which is compatible with the astrophysical neutrino flux finally detected by IceCube using two years of data from the completed IceCube detector.
|
4 |
Search for neutrino-induced cascade events in the IceCube detectorPanknin, Sebastian 17 October 2011 (has links)
Diese Arbeit präsentiert Ergebnisse einer Suche nach einem diffusen Fluss hochenergetischer, extraterrestrischer Neutrinos. Solch ein Fluss wird von verschiedenen Modellen zur Entstehung kosmischer Strahlung vorhergesagt. In einem Neutrinodetektor wie IceCube stehen im wesentlichen zwei Signaturen zum Nachweis der Neutrinos zur Verfügung: Das spurartige Lichtsignal eines neutrinoinduzierten Myons und das sphärische Lichtmuster eines neutrinoinduzierten Teilchenschauers, hier Kaskade genannt. Gesucht wurden neutrinoinduzierte Kaskaden mit Hilfe des IceCube-Neutrinodetektors. Die Daten stammen aus der Zeit von 2008 mit 367 Tage Messzeit. In dieser Zeit befand sich der Detektor noch im Aufbau und hatte etwa die Hälfte seiner Größe erreicht. Eine Neutrinoflusssuche mittels Kaskaden ist sensitiv auf alle Neutrinoflavors. Da sich die Kaskaden nur über wenige Meter ausdehnen, ist anders als bei den kilometerlangen Myonspuren, eine gute Energierekonstruktion möglich. Dadurch kann der astrophysikalische Neutrinofluss vom atmosphärischen Neutrinountergrund statistisch unterschieden werden. In der Simulation von neutrinoinduzierten Kaskaden wurde bisher nicht berücksichtigt, dass innerhalb einer hadronischen Kaskade auch Myonen erzeugt werden. Dieses kann die Form der Kaskade dahingehend beeiflussen, dass die sphärische Symmetrie abnimmt. Daher wurde der Effekt in dieser Arbeit parametrisiert und der Simulation hinzugefügt. Weiter wurden Schnitte auf die Ereignistopologie und rekonstruierte Energie entwickelt, welche den Untergrund aus atmosphärischen Myonen und atmosphärischen Neutrinos reduzieren. Vier der gemessenen Ereignisse passieren diese Schnitte. Aufgrund der hohen systematischen Fehler ist dieses Ergebnis mit einer Untergrunderwartung von 0.72+/-0.28+1.54-0.49 Ereignissen verträglich. Unter der Annahme eines Flavorverhältnisses von 1:1:1 bestimmt sich daraus die obere Grenze für den Neutrinofluss zu 9.5*10^-8 E^-2 GeV/s/sr^/cm^2. / This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72+/-0.28+1.54-0.49 events. For an assumed flavor ratio of 1:1:1$ the upper limit for the all flavor neutrino flux is 9.5*10^-8 E^-2 GeV/s/sr/cm2.
|
Page generated in 0.0648 seconds