Spelling suggestions: "subject:"diffusivities"" "subject:"diffusivities""
1 |
Transport and Phase-Transfer Catalysis in Gas-Expanded LiquidsMaxey, Natalie Brimer 11 April 2006 (has links)
Gas-expanded liquids (GXL) are a new and benign class of liquid solvents that are intermediate in physical properties between normal liquids and supercritical fluids and therefore may offer advantages in separations, reactions, and advanced materials. Phase-transfer catalysis (PTC) is a powerful tool in chemistry that facilitates interaction and reaction between two or more species present in immiscible phases and offers the ability to eliminate the use of frequently expensive, environmentally undesirable, and difficult to remove polar, aprotic solvents. The work presented here seeks to further characterize the transport properties of GXLs and apply these new solvents to PTC systems, which could result in both greener chemistry and improved process economics.
The transport properties of GXL are characterized by the measurement of diffusivities by the Taylor-Aris dispersion method and calculation of solvent viscosity based on those measurements. The measurement of these bulk properties is part of a larger effort to probe the effect of changes in the local structure surrounding a solute on the solution behavior. The two technologies of PTC and GXL are combined when the distribution of a phase-transfer catalyst between GXL and aqueous phases is measured and compared to changes in the kinetics of a reaction performed in the same system. The results show that increased reaction rates and more efficient catalyst recovery are possible with GXL solvents.
|
2 |
Universal formula for the mean first passage time in planar domainsGrebenkow, D. S. 19 September 2018 (has links)
No description available.
|
3 |
Nanoporous PlatinumPugh, Dylan Vicente 28 April 2003 (has links)
Dealloying is a corrosion process in which one or more elements are selectively removed from an alloy leading to a 3-dimensional porous structure of the more noble element(s). These porous structures have been known to cause stress corrosion cracking in noble metal alloy systems but more recent interest in using the corrosion process to produce porous metals has developed. Applications for these structures range from high surface area electrodes for biomedical sensors to use as skeletal structures for fundamental studies (e.g. low temperature heat exchangers or sensitivity of surface diffusivity to chemical environment). In this work we will review our current understanding of alloy corrosion including our most recent results demonstrating a more accurate method for calculating alloy critical potential based on potential hold experiments. The critical potentials calculated through the potential hold method were â 0.030VMSE, 0.110VMSE, and 0.175VMSE for Cu80Pt20, Cu75Pt25 Cu71Pt29 respectively. We will present the use of porous metals for making surface diffusivity measurements in the Pt systems as a function of chemical environment. A review of the use of small angle neutron scattering to make accurate measurements of pore size is presented and the sensitivity of pore size to electrolyte, electrolyte composition, applied potential and temperature will be explained. The production of porous Pt with pore sizes ranging from 2-200nm is demonstrated. / Ph. D.
|
4 |
Particle diffusivities in free and porous media from dynamic light scattering applying a heterodyne detection schemeKnoll, Matthias S.G., Vogel, Nicolas, Segets, Doris, Rausch, Michael H., Giraudet, Cédric, Fröba, Andreas P. 12 July 2022 (has links)
No description available.
|
5 |
Modeling the Non-equilibrium Phenomenon of Diffusion in Closed and Open Systems at an Atomistic Level Using Steepest-Entropy-Ascent Quantum ThermodynamicsYounis, Aimen M. 03 August 2015 (has links)
Intrinsic quantum Thermodynamics (IQT) is a theory that unifies thermodynamics and quantum mechanics into a single theory. Its mathematical framework, steepest-entropy-ascent quantum thermodynamics (SEAQT), can be used to model and describe the non-equilibrium phenomenon of diffusion based on the principle of steepest-entropy ascent. The research presented in this dissertation demonstrates the capability of this framework to model and describe diffusion at atomistic levels and is used here to develop a non-equilibrium-based model for an isolated system in which He3 diffuses in He4. The model developed is able to predict the non-equilibrium and equilibrium characteristics of diffusion as well as capture the differences in behavior of fermions (He3) and bosons (He4). The SEAQT framework is also used to develop the transient and steady-state model for an open system in which oxygen diffuses through a tin anode. The two forms of the SEAQT equation of motion are used. The first, which only involves a dissipation term, is applied to the state evolution of the isolated system as its state relaxes from some initial non-equilibrium state to stable equilibrium. The second form, the so-called extended SEAQT equation of motion, is applied to the transient state evolution of an open system undergoing a dissipative process as well mass-interactions with two mass reservoirs. In this case, the state of the system relaxes from some initial transient state to steady state. Model predictions show that the non-equilibrium thermodynamic path that the isolated system takes significantly alters the diffusion data from that of the equilibrium-based models for isolated atomistic-level systems found in literature. Nonetheless, the SEAQT equilibrium predications for He3 and He4 capture the same trends as those found in the literature providing a point of validation for the SEAQT framework. As to the SEAQT results for the open system, there is no data in the literature with which to compare since the results presented here are completely original to this work. / Ph. D.
|
6 |
Derivação de coeficientes de difusão turbulenta em condições de vento norte: aplicação em um modelo analítico euleriano de dispersão de poluentes / Derivation of turbulent diffusion coefficients in north wind conditions: application in an analytical model of dispersion of pollutants eulerianAlves, Ivan Paulo Marques 15 June 2012 (has links)
The advection-diffusion equation has been extensively used in air pollution models to simulate mean contaminant concentrations in the planetary boundary layer (PBL). Therefore, in a Eulerian framework, it is possible to theoretically model the dispersion from a continuous point source, given adequate boundary and initial conditions and the knowledge of the mean wind velocity and turbulent concentration fluxes. The choice of an appropriate parameterization for such fluxes plays an important role in the performance of air quality dispersion models based on the advection-diffusion equation. As a consequence, much of the turbulent dispersion research is associated with the specification of these fluxes. The most commonly used approximation for closing the advection-diffusion equation is to relate the turbulent concentration fluxes to mean concentration gradients through the use of eddy diffusivities, which carry within them the physical structure of the turbulent transport phenomenon. For a continuous point source the eddy diffusivities may vary spatially and temporally along the contaminant travel time. Taylor s statistical diffusion theory (1921) determines that the turbulent dispersion depends on the distance from a continuous point source. In the proximity of the source, the fluid particles tend to preserve the memory from their initial turbulent environment. For long travel times, this memory is lost, and the motion of the particles depends only on the local turbulence properties (BATCHELOR, 1949).The aim of the present study is to present a new formulation for the eddy diffusivities in terms of the distance from the source in an inhomogeneous, shear-generated turbulence. The proposition is based on expressions for the turbulent velocity spectra and the statistical diffusion theory. These eddy diffusivities, derived for neutral conditions are described by a complex integral formulation that must be numerically solved. An additional aim of this work is to obtain a simple algebraic expression for the eddy diffusivities in a neutral PBL as a function of the turbulence properties (inhomogeneous turbulence) and the distance from the source. Therefore, the hypothesis to be tested in this study is whether the complex integral formulation for eddy diffusivities can be expressed (substituted) by a simpler algebraic expression. Finally, to investigate the influence of the memory effect in the turbulent dispersion process, a vertical eddy diffusivity is evaluated as a function of the distance from the source against its asymptotic limit employing an Eulerian air pollution model and atmospheric dispersion experiments that were carried out in strong wind conditions. / A equação de difusão-advecção tem sido amplamente utilizada em modelos de poluição do ar para simular as concentrações médias de contaminantes na camada limite planetária (CLP). Portanto, seguindo uma formulação Euleriana, é possível construir um modelo teórico de dispersão de uma fonte pontual contínua a partir de um limite adequado, de condições iniciais e do conhecimento da velocidade média do vento e dos fluxos turbulentos de concentração. A escolha de uma parametrização apropriada para estes fluxos desempenha um papel importante em modelos de dispersão e de qualidade do ar que se baseiam na equação de difusão-advecção. Como consequência, muitas das pesquisas em dispersão turbulenta estão relacionadas com a especificação destes fluxos. A aproximação mais comumente usada para fechar a equação de difusão-advecção relaciona os fluxos turbulentos de concentração com os gradientes de concentração média através do uso de coeficientes de difusão. Estes carregam em si a estrutura física do fenômeno de transporte turbulento. Para uma fonte pontual contínua, tais coeficientes podem variar espacialmente e temporalmente ao longo da viagem dos contaminantes. A teoria de difusão estatística de Taylor (1921) determina que a dispersão turbulenta dependa da distancia de uma fonte pontual continua. Na proximidade da fonte, as partículas de fluído mantêm a memória do seu ambiente inicial turbulento. Para longos tempos de viagem, essa memória se perde, e o movimento das partículas segue apenas as propriedades locais de turbulência (BATCHELOR, 1949). O objetivo deste estudo é apresentar uma nova formulação para os coeficientes de difusão assintóticos e em função da distância da fonte para turbulência não-homogênea. A proposição se baseia em expressões dos espectros de energia cinética turbulenta e na teoria da difusão estatística. Estes coeficientes de difusão função da posição, derivados de condições neutras, são descritos por uma formulação complexa integral que deve ser resolvida numericamente. Um objetivo adicional neste trabalho é a derivação de uma expressão algébrica simples para os coeficientes de difusão, em função das propriedades da turbulência (turbulência não-homogênea) e da distância da fonte. A hipótese a ser testada neste estudo é se a formulação complexa integral para os coeficientes de difusão pode ser substituída por uma simples solução algébrica. Para investigar a influência do efeito de memória no processo de dispersão turbulenta, a difusividade vertical é avaliada em função da distância da fonte contra o seu limite assintótico. Para tanto, se utiliza um modelo Euleriano de poluição do ar cujos resultados são comparados com experimentos de dispersão atmosférica que foram realizados em condições de vento forte.
|
7 |
Weak nonergodicity in anomalous diffusion processesAlbers, Tony 02 December 2016 (has links) (PDF)
Anomale Diffusion ist ein weitverbreiteter Transportmechanismus, welcher für gewöhnlich mit ensemble-basierten Methoden experimentell untersucht wird.
Motiviert durch den Fortschritt in der Einzelteilchenverfolgung, wo typischerweise Zeitmittelwerte bestimmt werden, entsteht die Frage nach der Ergodizität.
Stimmen ensemble-gemittelte Größen und zeitgemittelte Größen überein, und wenn nicht, wie unterscheiden sie sich?
In dieser Arbeit studieren wir verschiedene stochastische Modelle für anomale Diffusion bezüglich ihres ergodischen oder nicht-ergodischen Verhaltens hinsichtlich der mittleren quadratischen Verschiebung.
Wir beginnen unsere Untersuchung mit integrierter Brownscher Bewegung, welche von großer Bedeutung für alle Systeme mit Impulsdiffusion ist.
Für diesen Prozess stellen wir die ensemble-gemittelte quadratische Verschiebung und die zeitgemittelte quadratische Verschiebung gegenüber und charakterisieren insbesondere die Zufälligkeit letzterer.
Im zweiten Teil bilden wir integrierte Brownsche Bewegung auf andere Modelle ab, um einen tieferen Einblick in den Ursprung des nicht-ergodischen Verhaltens zu bekommen.
Dabei werden wir auf einen verallgemeinerten Lévy-Lauf geführt.
Dieser offenbart interessante Phänomene, welche in der Literatur noch nicht beobachtet worden sind.
Schließlich führen wir eine neue Größe für die Analyse anomaler Diffusionsprozesse ein, die Verteilung der verallgemeinerten Diffusivitäten, welche über die mittlere quadratische Verschiebung hinausgeht,
und analysieren mit dieser ein oft verwendetes Modell der anomalen Diffusion, den subdiffusiven zeitkontinuierlichen Zufallslauf. / Anomalous diffusion is a widespread transport mechanism, which is usually experimentally investigated by ensemble-based methods.
Motivated by the progress in single-particle tracking, where time averages are typically determined, the question of ergodicity arises.
Do ensemble-averaged quantities and time-averaged quantities coincide, and if not, in what way do they differ?
In this thesis, we study different stochastic models for anomalous diffusion with respect to their ergodic or nonergodic behavior concerning the mean-squared displacement.
We start our study with integrated Brownian motion, which is of high importance for all systems showing momentum diffusion.
For this process, we contrast the ensemble-averaged squared displacement with the time-averaged squared displacement and, in particular, characterize the randomness of the latter.
In the second part, we map integrated Brownian motion to other models in order to get a deeper insight into the origin of the nonergodic behavior.
In doing so, we are led to a generalized Lévy walk.
The latter reveals interesting phenomena, which have never been observed in the literature before.
Finally, we introduce a new tool for analyzing anomalous diffusion processes, the distribution of generalized diffusivities, which goes beyond the mean-squared displacement, and we analyze with this tool an often used model of anomalous diffusion, the subdiffusive continuous time random walk.
|
8 |
On the diffusion in inhomogeneous systems / Über Diffusion in inhomogenen SystemenHeidernätsch, Mario 08 June 2015 (has links) (PDF)
Ziel dieser Arbeit ist die Untersuchung des Einflusses der stochastischen Interpretation der Langevin Gleichung mit zustandsabhängigen Diffusionskoeffizienten auf den Propagator des zugehörigen stochastischen Prozesses bzw. dessen Mittelwerte. Dies dient dem besseren Verständnis und der Interpretation von Messdaten von Diffusion in inhomogenen Systemen und geht einher mit der Frage der Form der Diffusionsgleichung in solchen Systemen. Zur Vereinfachung der Fragestellung werden in dieser Arbeit nur Systeme untersucht die vollständig durch einen ortsabhängigen Diffusionskoeffizienten und Angabe der stochastischen Interpretation beschrieben werden können.
Dazu wird zunächst für mehrere experimentell relevante eindimensionale Systeme der jeweilige allgemeine Propagator bestimmt, der für jede denkbare stochastische Interpretation gültig ist. Der analytisch bestimmte Propagator wird dann für zwei exemplarisch ausgewählte stochastische Interpretationen, hier für die Itô und Klimontovich-Hänggi Interpretation, gegenübergestellt und die Unterschiede identifiziert. Für Mittelwert und Varianz der Prozesse werden die drei wesentlichen stochastischen Interpretationen verglichen, also Itô, Stratonovich und Klimontovich-Hänggi Interpretation. Diese systematische Untersuchung von inhomogenen Diffusionsprozessen kann zukünftig helfen diese Art von, in genau einer stochastischen Interpretation, driftfreien Systemen einfacher zu identifizieren.
Ein weiterer wesentlicher Teil der Arbeit erweitert die Frage auf mehrdimensionale inhomogene anisotrope Systeme. Dies wird z.B. bei der Untersuchung von Diffusion in Flüssigkristallen mit inhomogenem Direktorfeld relevant. Obwohl hier, im Gegensatz zu eindimensionalen Systemen, der Propagator nicht allgemein berechnet werden kann, wird dennoch der Einfluss der Inhomogenität auf Messgrößen, wie die mittlere quadratische Verschiebung oder die Verteilung der Diffusivitäten, bestimmt. Anhand eines Beispiels wird auch der Einfluss der stochastischen Interpretation auf diese Messgrößen demonstriert. / The aim of this thesis is to investigate the influence of the stochastic interpretation of the Langevin equation with state-dependent diffusion coefficient on the propagator of the related stochastic process, or its averages, respectively. This helps to obtain a deeper understanding and to interpret measurement data of diffusion in inhomogeneous systems and is accompanied with the question of the proper form of the diffusion equation in such systems. To simplify the question, in this thesis only systems are considered which can be fully described by a spatially dependent diffusion coefficient and a given stochastic interpretation.
Therefore, for several experimentally relevant one-dimensional systems, the respective general propagator is determined, which is valid for any possible stochastic interpretation. Then, the propagator for two exemplary stochastic interpretations, here the Itô and Klimontovich-Hänggi interpretation, are compared and the differences are identified. For mean and variance of the processes three major interpretations are compared, namely the Itô, the Stratonovich and the Klimontovich-Hänggi interpretation. This systematic research on inhomogeneous diffusion process may help in future to identify these kind of, in exactly one stochastic interpretation, drift-free systems more easily.
Another important part of this thesis extends this question to multidimensional inhomogeneous anisotropic systems. This is of high relevance, for instance, for the research of diffusion in liquid crystalline systems with an inhomogeneous director field. Although, in contrast to one-dimensional systems, the propagator may not be calculated generally, the influence of the inhomogeneity on measurement data like the mean squared displacement or the distribution of diffusivities is determined. Based on one example, also the influence of the stochastic interpretation on these quantities is demonstrated.
|
9 |
On the diffusion in inhomogeneous systemsHeidernätsch, Mario 29 May 2015 (has links)
Ziel dieser Arbeit ist die Untersuchung des Einflusses der stochastischen Interpretation der Langevin Gleichung mit zustandsabhängigen Diffusionskoeffizienten auf den Propagator des zugehörigen stochastischen Prozesses bzw. dessen Mittelwerte. Dies dient dem besseren Verständnis und der Interpretation von Messdaten von Diffusion in inhomogenen Systemen und geht einher mit der Frage der Form der Diffusionsgleichung in solchen Systemen. Zur Vereinfachung der Fragestellung werden in dieser Arbeit nur Systeme untersucht die vollständig durch einen ortsabhängigen Diffusionskoeffizienten und Angabe der stochastischen Interpretation beschrieben werden können.
Dazu wird zunächst für mehrere experimentell relevante eindimensionale Systeme der jeweilige allgemeine Propagator bestimmt, der für jede denkbare stochastische Interpretation gültig ist. Der analytisch bestimmte Propagator wird dann für zwei exemplarisch ausgewählte stochastische Interpretationen, hier für die Itô und Klimontovich-Hänggi Interpretation, gegenübergestellt und die Unterschiede identifiziert. Für Mittelwert und Varianz der Prozesse werden die drei wesentlichen stochastischen Interpretationen verglichen, also Itô, Stratonovich und Klimontovich-Hänggi Interpretation. Diese systematische Untersuchung von inhomogenen Diffusionsprozessen kann zukünftig helfen diese Art von, in genau einer stochastischen Interpretation, driftfreien Systemen einfacher zu identifizieren.
Ein weiterer wesentlicher Teil der Arbeit erweitert die Frage auf mehrdimensionale inhomogene anisotrope Systeme. Dies wird z.B. bei der Untersuchung von Diffusion in Flüssigkristallen mit inhomogenem Direktorfeld relevant. Obwohl hier, im Gegensatz zu eindimensionalen Systemen, der Propagator nicht allgemein berechnet werden kann, wird dennoch der Einfluss der Inhomogenität auf Messgrößen, wie die mittlere quadratische Verschiebung oder die Verteilung der Diffusivitäten, bestimmt. Anhand eines Beispiels wird auch der Einfluss der stochastischen Interpretation auf diese Messgrößen demonstriert. / The aim of this thesis is to investigate the influence of the stochastic interpretation of the Langevin equation with state-dependent diffusion coefficient on the propagator of the related stochastic process, or its averages, respectively. This helps to obtain a deeper understanding and to interpret measurement data of diffusion in inhomogeneous systems and is accompanied with the question of the proper form of the diffusion equation in such systems. To simplify the question, in this thesis only systems are considered which can be fully described by a spatially dependent diffusion coefficient and a given stochastic interpretation.
Therefore, for several experimentally relevant one-dimensional systems, the respective general propagator is determined, which is valid for any possible stochastic interpretation. Then, the propagator for two exemplary stochastic interpretations, here the Itô and Klimontovich-Hänggi interpretation, are compared and the differences are identified. For mean and variance of the processes three major interpretations are compared, namely the Itô, the Stratonovich and the Klimontovich-Hänggi interpretation. This systematic research on inhomogeneous diffusion process may help in future to identify these kind of, in exactly one stochastic interpretation, drift-free systems more easily.
Another important part of this thesis extends this question to multidimensional inhomogeneous anisotropic systems. This is of high relevance, for instance, for the research of diffusion in liquid crystalline systems with an inhomogeneous director field. Although, in contrast to one-dimensional systems, the propagator may not be calculated generally, the influence of the inhomogeneity on measurement data like the mean squared displacement or the distribution of diffusivities is determined. Based on one example, also the influence of the stochastic interpretation on these quantities is demonstrated.
|
10 |
Weak nonergodicity in anomalous diffusion processesAlbers, Tony 23 November 2016 (has links)
Anomale Diffusion ist ein weitverbreiteter Transportmechanismus, welcher für gewöhnlich mit ensemble-basierten Methoden experimentell untersucht wird.
Motiviert durch den Fortschritt in der Einzelteilchenverfolgung, wo typischerweise Zeitmittelwerte bestimmt werden, entsteht die Frage nach der Ergodizität.
Stimmen ensemble-gemittelte Größen und zeitgemittelte Größen überein, und wenn nicht, wie unterscheiden sie sich?
In dieser Arbeit studieren wir verschiedene stochastische Modelle für anomale Diffusion bezüglich ihres ergodischen oder nicht-ergodischen Verhaltens hinsichtlich der mittleren quadratischen Verschiebung.
Wir beginnen unsere Untersuchung mit integrierter Brownscher Bewegung, welche von großer Bedeutung für alle Systeme mit Impulsdiffusion ist.
Für diesen Prozess stellen wir die ensemble-gemittelte quadratische Verschiebung und die zeitgemittelte quadratische Verschiebung gegenüber und charakterisieren insbesondere die Zufälligkeit letzterer.
Im zweiten Teil bilden wir integrierte Brownsche Bewegung auf andere Modelle ab, um einen tieferen Einblick in den Ursprung des nicht-ergodischen Verhaltens zu bekommen.
Dabei werden wir auf einen verallgemeinerten Lévy-Lauf geführt.
Dieser offenbart interessante Phänomene, welche in der Literatur noch nicht beobachtet worden sind.
Schließlich führen wir eine neue Größe für die Analyse anomaler Diffusionsprozesse ein, die Verteilung der verallgemeinerten Diffusivitäten, welche über die mittlere quadratische Verschiebung hinausgeht,
und analysieren mit dieser ein oft verwendetes Modell der anomalen Diffusion, den subdiffusiven zeitkontinuierlichen Zufallslauf. / Anomalous diffusion is a widespread transport mechanism, which is usually experimentally investigated by ensemble-based methods.
Motivated by the progress in single-particle tracking, where time averages are typically determined, the question of ergodicity arises.
Do ensemble-averaged quantities and time-averaged quantities coincide, and if not, in what way do they differ?
In this thesis, we study different stochastic models for anomalous diffusion with respect to their ergodic or nonergodic behavior concerning the mean-squared displacement.
We start our study with integrated Brownian motion, which is of high importance for all systems showing momentum diffusion.
For this process, we contrast the ensemble-averaged squared displacement with the time-averaged squared displacement and, in particular, characterize the randomness of the latter.
In the second part, we map integrated Brownian motion to other models in order to get a deeper insight into the origin of the nonergodic behavior.
In doing so, we are led to a generalized Lévy walk.
The latter reveals interesting phenomena, which have never been observed in the literature before.
Finally, we introduce a new tool for analyzing anomalous diffusion processes, the distribution of generalized diffusivities, which goes beyond the mean-squared displacement, and we analyze with this tool an often used model of anomalous diffusion, the subdiffusive continuous time random walk.
|
Page generated in 0.0331 seconds