Spelling suggestions: "subject:"4digital biomarkers"" "subject:"4digital iomarkers""
1 |
Evaluating Digital Cognitive Biomarkers as a Noninvasive Diagnostic Tool for Alzheimer's Disease: Correlations with Classic CSF BiomarkersCorripio, Kasey 01 January 2023 (has links) (PDF)
Alzheimer's Disease (AD) is a neurodegenerative disorder affecting over 35 million people. Early diagnosis and intervention are crucial for improving outcomes. Digital Cognitive Biomarkers (DCBs) offer a promising approach for early detection and disease management, quantifying cognitive processes of encoding and retrieval through a hierarchical Bayesian cognitive processing model using wordlist memory tests. We hypothesize that DCBs will correlate with classic AD cerebrospinal fluid (CSF) biomarkers (Aβ42, T-tau, p-tau) in patients with varying cognitive decline levels compared to healthy elderly controls. Using Alzheimer's Disease Neuroimaging Initiative (ADNI) data and paired Pearson correlation coefficient analysis, our results support the hypothesis, indicating that DCBs correlate with CSF biomarkers and demonstrating their potential as a noninvasive diagnostic tool for AD. Furthermore, DCBs exhibited improved diagnostic accuracy compared to classic AD CSF biomarkers, as indicated by the area under the Receiver Operating Characteristic curve analysis. DCBs hold promise for monitoring disease progression, response to therapeutics, and identifying patients at earlier disease stages. Future research should validate these findings in diverse populations and conduct longitudinal studies to assess DCBs' potential in tracking disease progression and treatment response. Integrating DCBs with other diagnostic approaches, such as neuroimaging, could enhance overall AD diagnosis accuracy and provide a comprehensive understanding of an individual's cognitive health. In conclusion, DCBs may offer a valuable, noninvasive tool for early diagnosis and management of Alzheimer's Disease, supporting the initial hypothesis.
|
2 |
Management of multiple sclerosis fatigue in the digital agePinarello, Chiara, Elmers, Julia, Inojosa, Hernán, Beste, Christian, Ziemssen, Tjalf 25 November 2024 (has links)
Fatigue is one of the most disabling symptoms of Multiple Sclerosis (MS), affecting more than 80% of patients over the disease course. Nevertheless, it has a multi-faceted and complex nature, making its diagnosis, evaluation, and treatment extremely challenging in clinical practice. In the last years, digital supporting tools have emerged to support the care of people with MS. These include not only smartphone or table-based apps, but also wearable devices or novel techniques such as virtual reality. Furthermore, an additional effective and cost-efficient tool for the therapeutic management of people with fatigue is becoming increasingly available. Virtual reality and e-Health are viable and modern tools to both assess and treat fatigue, with a variety of applications and adaptability to patient needs and disability levels. Most importantly, they can be employed in the patient’s home setting and can not only bridge clinic visits but also be complementary to the monitoring and treatment means for those MS patients who live far away from healthcare structures. In this narrative review, we discuss the current knowledge and future perspectives in the digital management of fatigue in MS. These may also serve as sources for research of novel digital biomarkers in the identification of disease activity and progression.
|
3 |
Detection and localization of cough from audio samples for cough-based COVID-19 detection / Detektion och lokalisering av hosta från ljudprover för hostbaserad COVID-19-upptäcktKrishnamurthy, Deepa January 2021 (has links)
Since February 2020, the world is in a COVID-19 pandemic [1]. Researchers around the globe are pitching in to develop a fast reliable, non-invasive testing methodology to solve this problem and one of the key directions of research is to utilize coughs and their corresponding vocal biomarkers for diagnosis of COVID-19. In this thesis, we propose a fast, real-time cough detection pipeline that can be used to detect and localize coughs from audio samples. The core of the pipeline utilizes the yolo-v3 model [2] from vision domain to localize coughs in the audio spectrograms by treating them as objects. This outcome is transformed to localize the boundaries of cough utterances in the input signal. The system to detect coughs from CoughVid dataset [3] is then evaluated. Furthermore, the pipeline is compared with other existing algorithms like tinyyolo-v3 to test for better localization and classification. Average precision(AP@0.5) of yolo-v3 and tinyyolo-v3 model are 0.67 and 0.78 respectively. Based on the AP values, tinyyolo-v3 performs better than yolo-v3 by atleast 10% and based on its computational advantage, its inference time was also found to be 2.4 times faster than yolo-v3 model in our experiments. This work is considered to be novel and significant in detection and localization of cough in an audio stream. In the end, the resulting cough events are used to extract MFCC features from it and classifiers were trained to predict whether a cough has COVID-19 or not. The performance of different classifiers were compared and it was observed that random forest outperformed other models with a precision of 83.04%. It can also be inferred from the results that the classifier looks promising, however, in future this model has to be trained using clinically approved dataset and tested for its reliability in using this model in a clinical setup. / Sedan februari 2020 är världen inne i en COVID-19-pandemi [1]. Forskare runt om i världen satsar på att utveckla en snabb tillförlitlig, icke-invasiv testmetodik för att lösa detta problem och en av de viktigaste forskningsriktningarna är att använda hosta och deras motsvarande vokala biomarkörer för diagnos av COVID-19. I denna avhandling föreslår vi en snabb pipeline för hostdetektering i realtid som kan användas för att upptäcka och lokalisera hosta från ljudprover. Kärnan i rörledningen använder yolo-v3-modellen [2] från syndomänen för att lokalisera hosta i ljudspektrogrammen genom att behandla dem som objekt. Detta resultat transformeras för att lokalisera gränserna för hosta yttranden i insignalen. Systemet för att upptäcka hosta från CoughVid dataset [3] utvärderas sedan. Dessutom jämförs rörledningen med andra befintliga algoritmer som tinyyolo-v3 för att testa för bättre lokalisering och klassificering. Genomsnittlig precision (AP@0.5) för modellen yolo-v3 och tinyyolo-v3 är 0,67 respektive 0,78. Baserat på AP-värdena fungerar tinyyolo-v3 bättre än yolo-v3 med minst 10% och baserat på dess beräkningsfördel befanns dess inferenstid också vara 2,4 gånger snabbare än yolo-v3- modellen i våra experiment. Detta arbete anses vara nytt och viktigt för att upptäcka och lokalisera hosta i en ljudström. I slutändan används de resulterande hosthändel-serna för att extrahera MFCC-funktioner från det och klassificerare utbildades för att förutsäga om en hosta har COVID-19 eller inte. Prestanda för olika klassificerare jämfördes och det observerades att slumpmässig skog överträffade andra modeller med en precision på 83.04%. Av resultaten kan man också dra slutsatsen att klassificeraren ser lovande ut, men i framtiden måste denna modell utbildas med hjälp av kliniskt godkänd dataset och testas med avseende på dess tillförlitlighet vid användning av denna modell i ett kliniskt upplägg.
|
Page generated in 0.0432 seconds