• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

[en] DIRECT SHEAR TESTS ON IPANEMA BEACH SAND / [pt] ENSAIOS DE CISALHAMENTO DIRETO NA AREIA DA PRAIA DE IPANEMA

JOAO VICTOR MELO COUTINHO 04 October 2022 (has links)
[pt] Uma extensa campanha de ensaios de cisalhamento direto foi realizada na Areia da Praia de Ipanema, inspirado em Simões (2015). Os ensaios foram realizados em corpos de prova na condição seca, moldados em seis diferentes domínios de compacidade relativa (CR), desde muito fofo até muito compacto. Para cada domínio de CR, foram realizados ensaios sob dez diferentes valores de tensão normal nominal, variando de 25 a 1250 kPa. Em todos os ensaios, foi utilizado um dispositivo desenvolvido para impedir a rotação do top cap. A grande quantidade e variedade de ensaios permitiu uma análise detalhada de como as características das curvas tensão cisalhante sobre tensão normal versus deslocamento horizontal relativo e deslocamento vertical do top cap versus deslocamento horizontal relativo variaram com as variações de CR e de tensão normal, especialmente o ângulo de atrito de pico e o deslocamento vertical do top cap na ruptura, mostrando contração ou dilatação na ruptura. O ângulo de atrito a volume constante da Areia da Praia de Ipanema parece estar situado entre 30 e 32 graus. Uma curva que relaciona índice de vazios crítico e tensão normal nominal crítica foi obtida a partir dos ensaios de cisalhamento direto na Areia da Praia de Ipanema, sendo análoga à linha de estado crítico proposta por Lee e Seed (1967). Ademais, a alta frequência de aquisição de dados tornou explícito o fenômeno conhecido como stick-slip nas curvas obtidas, mostrando que a amplitude do fenômeno é tanto maior quanto menor a tensão normal nominal. / [en] A comprehensive research program of direct shear tests was carried out on Ipanema Beach Sand, inspired by Simões (2015). The tests were carried out on specimens in dry condition, prepared in six different domains of relative density (Dr), from very loose to very dense. For each Dr domain, tests were performed under ten different values of nominal normal stress, ranging from 25 to 1250 kPa. In all tests, a device developed to prevent the rotation of the top cap was used. The large number and variety of tests allowed a detailed analysis of how the characteristics of the Shear stress over normal stress versus relative horizontal displacement curves and top cap vertical displacement versus relative horizontal displacement curves varied with CR and normal stress variations, especially the peak friction angle and the vertical displacement of the top cap at failure, showing contraction or dilation at failure. The angle of friction at constant volume of the Ipanema Beach Sand seems to be situated between 30 and 32 degrees. A curve relating critical void ratio and critical nominal normal stress was obtained from the direct shear tests run on Ipanema Beach Sand, being analogous to the critical state line proposed by Lee and Seed (1967). Moreover, the high frequency of data acquisition made explicit the phenomenon known as stickslip in the obtained curves, showing that the amplitude of the phenomenon is greater the smaller the nominal normal stress.
12

High Pressure Die Casting of Aluminium and Magnesium Alloys: Formation of Microstructure and Defects

Somboon Otarawanna Unknown Date (has links)
In recent years there has been a growing demand to produce lightweight high pressure die cast (HPDC) parts for structural applications to decrease vehicle mass and to reduce manufacturing costs. Due to the coupled rapid heat flow and complex flow/deformation that occur in the process, the formation of microstructure and defects in HPDC are still not fully understood. Developing a better understanding of microstructure formation is essential to enable advances in die design and process optimisation, as well as alloy development, to improve the quality and productivity of HPDC components. Therefore, this thesis aims to enhance this understanding by conducting detailed microstructural analysis of samples produced in controlled HPDC experiments. In the first series of experiments, various microstructure characterisation techniques were used to study salient HPDC microstructural features. The microstructures of castings were characterised at different length scales, from the scale of the casting to the scale of the eutectic interlamellar spacing. The results show that the salient as-cast microstructural features, e.g. externally solidified crystals (ESCs), defect bands, surface layer, grain size distribution, porosity and hot tears were similar for both two HPDC-specific Al alloys used, AlSi4MgMn and AlMg5Si2Mn. The formation of these features has been explained by considering the influence of flow and solidification during each stage of the HPDC process. The formation of defect bands is further studied by investigating the ratio between band thickness ( ) and average grain size in the band ( ). Suitable methods for measuring w and dsb in HPDC have been developed. The w/dsb relationship of defect bands has been investigated in HPDC specimens from a range of alloys, casting geometries and band locations within castings. The bands were measured to be 7-18 mean grains wide. This is substantial evidence that defect bands form due to strain localisation in partially solidified alloys during cold-chamber and hot-chamber HPDC. At the end of solidification, dilatant shear bands contain a higher eutectic volume fraction and/or porosity content than adjacent material. In the cross-section of the AM50 Mg alloy, the centrally-located band contains a much higher volume fraction of concentrated porosity than the second-outermost band and insignificant porosity was found in the outermost band. The level of porosity in bands was attributed to the relative difficulty of feeding shrinkage for each band location. As the feeding of material during the intensification stage is important for the reduction of porosity, the influence of intensification pressure (IP) and gate thickness on the transport of material through the gate during the latter stages of HPDC were investigated. Microstructural characterisation of the gate region indicated a marked change in feeding mechanism with increasing IP and gate size. Castings produced with a high IP and/or thick gate contained a relatively low fraction of total porosity and shear band-like features existed through the gate, suggesting that semi-solid strain localisation in the gate is involved in feeding during the pressure intensification stage. When a low IP is combined with a thin gate, no shear band was observed in the gate and feeding was less effective, resulting in a higher level of porosity in the HPDC component. As equiaxed primary crystals are subjected to intense shear during HPDC, their agglomeration and bending behaviour were investigated in the last series of experiment. Samples produced by near-static cooling, HPDC and Thixomoulding®, where the solidifying crystals experience different levels of mechanical stresses, were characterised. The electron backscatter diffraction (EBSD) technique was used to acquire grain misorientation data which is linked to the crystal agglomeration and bending behaviour during solidification. The number fraction of low-energy grain boundaries in HPDC and Thixomoulded samples was substantially higher than in ‘statically cooled’ samples. This is attributed to the much higher shear stresses and pressure applied on the solidifying alloy in HPDC and Thixomoulding, which promote crystal collisions and agglomeration. In-grain misorientations were found to be significant only in branched dendritic crystals which were subjected to significant shear stresses. This is related to the increased bending moment acting on long protruding dendrite arms compared to more compact crystal morphologies.
13

Modeling Different Failure Mechanisms in Metals

Zhang, Liang 2011 December 1900 (has links)
Material failure plays an important role in human life. By investigating the failure mechanisms, people can more precisely predict the failure conditions to develop new products, to enhance product performances, and most importantly, to save lives. This work consists of three parts corresponding to three different failure mechanisms in metals, i.e., the localized necking in sheet metals, the bifurcation in bulk and sheet metals, and the ductile fracture induced by the void nucleation, growth, and coalescence. The objective of the first part is to model the localized necking in anisotropic sheet metals to demonstrate that localized geometric softening at a certain stage of deformation rather than the initial defects is the main cause of localized necking. The sheet is assumed to have no initial geometric defects. The deformation process is divided into two stages. The critical strains for a neck to form are obtained from a Considère-type criterion. The defect ratio at the neck formation is obtained using an energy-based approach. The neck evolution is considered. A novel failure criterion is proposed. Two types of necks are fond to be most competitive to cause material failure during continued deformation. The forming limit curves are hereby found to exhibit different characteristics in different region. The predicted forming limit curve for 2036-T4 aluminum is found to fit with the experimental results well. The sheet thickness, the strain hardening behavior, and plastic anisotropy are found to affect the sheet metal formability. More realistic yield criterions and strain hardening behaviors can be implemented into the proposed model. This part provides an alternative approach to modeling the localized necking in anisotropic sheet metals. The objective of the second part is to model the bifurcation in anisotropic bulk and sheet metals to couple plastic anisotropy and the strain hardening/softening behavior and also to identify different bifurcation modes in sheet metals. The material is assumed to exhibit a non-linear strain hardening/softening behavior and to obey the Hill-type Drucker-Prager yield criterion along with a non associated flow rule. The constitutive relations and the conditions for bifurcation in bulk and sheet metals are derived. The internal friction coefficient, plastic anisotropy, the terms introduced by the co-rotational stress rates, and the terms introduced by the stress resultant equilibrium are found to affect the onset of bifurcation. Two bifurcation modes are found to exist in sheet metals. More realistic material properties can be implemented into the proposed model. This part provides an applicable approach to modeling the bifurcation in anisotropic bulk and sheet metals. The objective of the third part is to derive the constitutive relations for porous metals using generalized Green’s functions to better understand the micromechanism of the ductile fracture in metals. The porous metals are assumed to consist of an isotropic, rigid-perfectly plastic matrix and numerous periodically distributed voids and to be subject to non-equal biaxial or triaxial extension. Two types of hollow cuboid RVEs are employed represent the typical properties of porous metals with cylindrical and spherical voids. The microscopic velocity fields are obtained using generalized Green’s functions. The constitutive relations are derived using the kinematic approach of the Hill-Mandel homogenization theory and the limit analysis theory. The macroscopic mean stress, the porosity, the unperturbed velocity field, and the void distribution anisotropy are found to affect the macroscopic effective stress and the microscopic effective rate of deformation field. The proposed model is found to provide a rigorous upper bound. More complicated matrix properties (e.g., plastic anisotropy) and void shapes can be implemented into the proposed model. This part provides an alternative approach to deriving the constitutive relations for porous metals.
14

Coupled Hydro-Mechanical Modelling of Gas Migration in Saturated Bentonite

Guo, Guanlong 10 December 2020 (has links)
Bentonite is regarded as an ideal geomaterial for the engineering barrier system of a deep geological repository (DGR) where nuclear wastes are disposed, as it has several desirable properties for sealing the nuclear wastes, including low permeability, low diffusion coefficient, high adsorption capacity and proper swelling ability. Nevertheless, gas migration in saturated bentonite may undermine the sealing ability of the geomaterial. Previous experimental studies showed that the gas migration process is accompanied by complex hydromechanical (HM) behaviors, such as gas breakthrough phenomenon, development of preferential pathways, build-up of water pressure and total stress, nearly saturated state after gas injection test, localized consolidation, water exchange between clay matrix and developed fractures and self-sealing process. These experimentally observed behaviors should be properly modelled for conducting a reliable performance assessment for the geomaterial over the lifespan of DGR. In this thesis, two different coupled HM frameworks, i.e., one based on double porosity (DP) concept, referred to as coupled HM-DP framework, and the other on phase field (PF) method, referred to as coupled HM-PF framework, are proposed to simulate the gas migration process in saturated bentonite. For the coupled HM-DP framework, the saturated bentonite is assumed as a superposition of a MAcro-Continuum (MAC) and a MIcro-Continuum (MIC). Two-phase flow is only allowed in the MAC, whereas the MIC is impermeable to both water and gas. Nevertheless, the water can transfer between the MIC and the MAC under the water pressure gap. The first coupled HM model in this framework is based on a double effective stress concept. Mechanical behaviors of the MAC and the MIC are respectively governed by Bishop-type effective stress and Terzaghi’s effective stress. The model can well simulate the evolutions of both gas pressure and gas outflow rate, the water exchange between clay matrix and developed pathways, the high degree of saturation and the consolidation of clay matrix. To account for the development of preferential pathways, the damaging effect has been introduced in the framework. In this improved model, Bishop-type effective stress for the MAC is replaced by the independent stress state variables, i.e., net normal stress and suction, since using the net normal stress is beneficial to simulating tensile failure under high gas pressure. Numerical results showed that the damage-enhanced model can well describe the effect of the development of preferential pathways on the build-up of water pressure and total stress. In addition, the proposed hysteretic models for intrinsic and relative permeabilities make the coupled HM framework more flexible to reproduce the experimental results. To explicitly simulate the development of preferential pathways, a coupled HM-PF framework is developed by using Coussy’s thermodynamic theory and the microforce balance law. The coupled HM-PF framework is implemented in the standard Finite Element Method (FEM). To avoid the pore pressure oscillation and enhance the computational efficiency, a stabilized mixed finite element, in which linear shape functions are selected for interpolating all primary variables, is adopted to discretize the whole domain. In the developed framework, swelling pressure (initial stress) is accounted for by introducing a modified strain tensor that is the sum of the strain tensor due to deformation and the strain tensor calculated from the initial stress. The numerical results showed that the developed coupled HM-PF framework can capture some important behaviors, such as the discrete pathways, localized gas flow, built-up of water pressure and total stress under constant volume condition and nearly saturated state in clay matrix. A spatially autocorrelated random field is introduced into the framework to describe the heterogeneous distribution of HM properties in bentonite. The heterogeneity is beneficial to simulating the fracture branching and the complex fracture trajectory. Numerical results showed that some factors, such as Gaussian random field, coefficient of variation, boundary condition and injection rate, have significant influences on the fracture trajectory. At the end of the thesis, the obtained numerical results are synthesized and analyzed. Based on the analysis, the pros and cons of the developed numerical models are discussed. Corresponding to the limitations, some recommendations are proposed for future studies.
15

Numerical study on ground reaction curves for shallow overburden tunnels / 小土被りトンネルでの地山特性曲線に関する数値解析的研究 / # ja-Kana

Muhammad, Shehzad Khalid 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21359号 / 工博第4518号 / 新制||工||1703(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 岸田 潔, 教授 三村 衛, 教授 木村 亮 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
16

Effondrement granulaire : couplages fluide-grains

Rondon, Loic 14 October 2011 (has links)
Nous étudions expérimentalement l'effondrement d'une colonne granulaire dans un liquide visqueux. Contrairement au cas sec, la morphologie des dépôts n'est principalement plus contrôlée par le rapport d'aspect initial du tas mais par la fraction volumique initiale de la masse granulaire. Deux régimes différents sont identifiés selon l'empilement initial. L'empilement lâche donne lieu à des dépôts minces et longs et la dynamique est rapide. Une surpression du liquide est mesurée sous de la colonne. Pour l'empilement dense, l'étalement final est deux fois moindre, le mouvement est lent et une dépression interstitielle est mesurée. Ces observations suggèrent que la dynamique de l'effondrement granulaire dans un fluide est fortement affectée par le comportement de la dilatance du milieu granulaire.Nous développons ensuite un modèle théorique basé sur des équations diphasiques moyennées dans l’épaisseur prenant en compte les mécanismes de dilatance. L’étude dimensionnelle de notre modèle permet de montrer que l’effondrement d’une colonne est contrôlé par trois paramètres sans dimension : le rapport d’aspect de la colonne, la fraction volumique initiale, et le nombre de grains dans l’épaisseur. On montre également que le temps caractéristique met en compétition le frottement visqueux et la gravité.De ce modèle, nous développons un algorithme de résolution lagrangien. Cette approche, grossière mais robuste, permet d’implanter s sans trop de difficulté. Le code est validé sur des configurations simples sur plan incliné avant de simuler l’effondrement de colonnes granulaires immergées dans la même gamme de paramètres que nos expériences. / Nous étudions expérimentalement l'effondrement d'une colonne granulaire dans un liquide visqueux. Contrairement au cas sec, la morphologie des dépôts n'est principalement plus contrôlée par le rapport d'aspect initial du tas mais par la fraction volumique initiale de la masse granulaire. Deux régimes différents sont identifiés selon l'empilement initial. L'empilement lâche donne lieu à des dépôts minces et longs et la dynamique est rapide. Une surpression du liquide est mesurée sous de la colonne. Pour l'empilement dense, l'étalement final est deux fois moindre, le mouvement est lent et une dépression interstitielle est mesurée. Ces observations suggèrent que la dynamique de l'effondrement granulaire dans un fluide est fortement affectée par le comportement de la dilatance du milieu granulaire.Nous développons ensuite un modèle théorique basé sur des équations diphasiques moyennées dans l’épaisseur prenant en compte les mécanismes de dilatance. L’étude dimensionnelle de notre modèle permet de montrer que l’effondrement d’une colonne est contrôlé par trois paramètres sans dimension : le rapport d’aspect de la colonne, la fraction volumique initiale, et le nombre de grains dans l’épaisseur. On montre également que le temps caractéristique met en compétition le frottement visqueux et la gravité.De ce modèle, nous développons un algorithme de résolution lagrangien. Cette approche, grossière mais robuste, permet d’implanter s sans trop de difficulté. Le code est validé sur des configurations simples sur plan incliné avant de simuler l’effondrement de colonnes granulaires immergées dans la même gamme de paramètres que nos expériences.
17

Comportement thermomécanique du sel gemme : Application au dimensionnement des cavités / Thermomechanical behavior of rock salt : Application to cavern design

Labaune, Paule 09 October 2018 (has links)
Les cavités salines représentent une technique prometteuse de stockage massif d’énergie, notamment pour les énergies renouvelables dont la production est par nature intermittente et imprévisible. Historiquement utilisées pour le stockage saisonnier d’hydrocarbures (méthane, pétrole...), les cavités salines sont aujourd’hui sollicitées pour le stockage de nouveaux fluides (hydrogène, dioxyde de carbone...) avec des scenarii plus exigeants. Les méthodes de dimensionnement des cavités doivent être mises à jour pour répondre aux nouveaux défis de la transition énergétique.Cette thèse propose une nouvelle méthodologie de dimensionnement des cavités salines, basée sur le développement d’un nouveau modèle constitutif pour le sel gemme incluant des critères de dilatance et de traction. Ce nouveau modèle permet d’ajuster avec un unique jeu de paramètres de nombreux essais de laboratoire différents, en particulier courts et longs.Des simulations couplées thermo-mécaniques de cavités, remplies de méthane ou d’hydrogène, et du sel gemme environnant sont réalisées pour différents scenarii d’exploitation, classiques ou se rapprochant des nouveaux besoins liés à la transition énergétique. On étudie en particulier les effets de la durée et de l’amplitude des cycles, du débit d’injection ou de soutirage. Les résultats obtenus avec la nouvelle méthodologie sont comparés avec ceux de la méthodologie classique. / Salt caverns are a promising technique for massive energy storage, especially in the case of the intermittent and unpredictable renewable energy. Historically used for seasonal storage of hydrocarbons (methane, oil...), they are potentially operated with increasingly demanding scenarios for the storage of other fluids (hydrogen, carbon dioxide...). Design methods need to be updated to rise to the new challenges of the energy transition.This thesis proposes a new methodology for salt cavern design, based on the development of a new rheological model including a dilatancy and a tensile criteria. This new model allows to fit numerous different laboratory tests with a single parameter set, in particular short- and long-term tests.Thermo-mechanical numerical simulations of caverns, filled with either methane or hydrogen, and the surrounding rock salt are performed under various cycling scenarios which are classical or closer to the needs associated with the energy transition. Effects of cycle duration, amplitude and mass flow are especially investigated. Results obtained with the new and the classical methodologies are compared.
18

Numerical Studies On Ductile Fracture Of Pressure Sensitive Plastic Solids

Subramanya, H Y 01 1900 (has links)
Experimental studies have shown that the yield strength of many important engineering materials such as polymers, ceramics and metallic glasses is dependent on hydrostatic stress. In addition, these materials may also exhibit plastic dilatancy. These deviations from the assumptions of classical plasticity theories have also been observed for some metallic alloys, although to a lesser extent compared to non-metals. In pressure independent plastic solids, it has been found that the level of crack tip constraint can affect the near-tip stress and deformation fields and hence the fracture resistance. The objective of the present work is to study the effects of pressure sensitive yielding, plastic dilatancy and constraint loss on the ductile fracture processes under mode-I conditions. Further, the three-dimensional (3D) structure of elastic-plastic near-crack front fields in a pressure independent plastic solid under mixed mode (combined modes I and II) loading is also examined. A finite element study of 3D crack tip fields in pressure sensitive plastic solids under mode-I, small scale yielding (SSY) conditions is first carried out. The material is assumed to obey a small strain, Extended Drucker-Prager (EDP)yield criterion. The roles of pressure sensitive yielding, plastic dilatancy and yield locus shape on the 3D plastic zone development and near-crack front fields are systematically investigated. It is found that while pressure sensitivity leads to a significant drop in the hydrostatic stress all along the 3D crack front, it enhances the plastic strain and crack opening displacements. However, plastic incompressibility results in elevation of both near-tip hydrostatic stress and notch opening. The implications of these observations on micro-void growth and interaction near a notch tip are studied in detail subsequently. The effects of constraint loss on void growth near a notch tip under mode-I loading in materials exhibiting pressure sensitive yielding and plastic dilatancy are investigated by performing large deformation elastic-plastic finite element analyses. To this end, two-dimensional (2D)plane strain and 3Dmodified boundary layer formulations are employed by prescribing the elastic K-T field as remote boundary conditions. The results are generated for different combinations of K (or J ) and T -stress. The material is assumed to obey a finite strain, EDP yield condition. The distributions of hydrostatic stress and plastic strain in the ligament connecting the notch and a nearby void (cylindrical or spherical) as well as the growth of the notch and the void are studied. The results show that void growth with respect to J is enhanced due to pressure sensitivity, and more so when the plastic flow is non-dilatational, which corroborates with the trends exhibited by the 3D crack tip fields. However, the evolution of ductile fracture processes like void growth, plastic strain localization and ligament length reduction with respect to J is retarded in the case of spherical voids. Further, irrespective of pressure sensitivity, loss of crack tip constraint can significantly slow down void growth. The effects of pressure sensitive yielding and plastic dilatancy on near-tip void growth and multiple void interaction mechanisms in single edge notched bend (SENB) and center cracked tension (CCT) specimens which display high and low constraint levels, respectively, are investigated next. It is observed that the latter mechanism which is favored by high initial porosity is further accelerated by pressure sensitive yielding and high constraint. The predicted resistance curves based on a simple void coalescence mechanism show enhancement in fracture resistance when constraint level is low and when pressure sensitivity is suppressed. Finally, detailed elastic-plastic finite element simulations are carried out using a boundary layer (SSY) formulation to investigate the 3D nature of near-crack front fields in a von Mises solid under mixed mode (combined modes I and II)loading. The plastic zones and radial, angular and thickness variations of the stresses are studied corresponding to different levels of remote elastic mode mixity and applied load, as measured by the plastic zone size with respect to the plate thickness. The 3D results are compared with those obtained from 2D simulations and asymptotic solutions to establish the validity of 2D plane stress and plane strain approximations near a crack front. It is found that, in general, plane stress conditions prevail at a distance from the crack front exceeding half the plate thickness, although it could be slightly smaller for mode-II predominant loading.
19

Comportement élasto-plastique incrémental des poudres ductiles : simulation de l'écoulement plastique par la méthode des éléments finis multi-particules / Incremental elasto-plastic behaviour of ductile powders : Discrete simulation of the plastic flow

Abdelmoula, Nouha 13 July 2016 (has links)
Cette thèse concerne la modélisation du comportement mécanique de poudres ductiles au cours de leur mise en forme par le procédé de compression à froid. L’approche utilisée consiste à modéliser la poudre par un échantillon numérique de 50 particules sphériques distribuées aléatoirement. Chaque particule est maillée en éléments finis avec un comportement élasto-plastique et interagit par contact avec ses voisines. Sous l’effet du chargement, les particules se déforment et subissent de grandes transformations.La méthode développée consiste à imposer aux frontières de l'échantillon numérique des conditions aux limites en déplacement ou en force afin de simuler une réponse continue équivalente en termes de contrainte-déformation pour plusieurs chemins de chargement depuis les faibles valeurs de densité relative jusqu'aux fortes valeurs. Outre le fait que la méthode permet d’appliquer par la simulation des chemins de chargement inaccessibles aux techniques expérimentales, elle fournit de nombreuses indications sur la phénoménologie du comportement aux frontières de l'échantillon en relation avec la morphologie des particules déformées plastiquement et l’évolution des surfaces de contact inter-particules.Cette réponse obtenue sera étudiée au moyen des notions de l'élasto-plasticité classique, à savoir la surface de charge et la loi d'écoulement. L'accent est mis sur l’analyse de l’écoulement plastique et l'existence du potentiel plastique. Les résultats montrent que la direction d’écoulement est approximativement unique pour les états de contrainte éloignés du point de chargement. En revanche, la direction d’écoulement cesse d’être unique à proximité de point de chargement, ce qui révèle le caractère anisotrope de l’écrouissage. Ce comportement, propre aux poudres ductiles, est intimement lié à la déformation des grains. La dégradation anisotrope des propriétés mécaniques résultant du mécanisme de dilatance est également étudiée. / This thesis is concerned with the modelling of the mechanical behaviour of ductile powders during cold compaction process. A numerical method was implemented, in which a powder sample was assimilated to an assembly of 50 meshed particles in a cubic box which was submitted to compressive loadings simulated by means of the finite element method. Each particle was meshed and assigned an elastic-plastic constitutive behaviour. Particles interacted through mechanical, frictional contact and underwent large transformation during loading.The method developped in the thesis consisted in imposing boundary conditions as displacements or forces on the bounding walls of the numerical sample. The mechanical response of the sample was averaged to obtain the equivalent response of a continuum in terms of stress and strain. Various loading paths, including loading paths that are technically not attainable by experimental means, were applied up to different values of relative densities, from low (60%) to high values (98%). Much information on the phenomenological behaviour of the numerical sample could be obtained, in relation with the morphology of deformed particles and the evolution of contact surfaces.The results were interpreted based on the concepts of classical elasto-plasticity, i.e., yield surface and flow rule. The main focus of the study was the analysis of incremental plastic flow and the existence of a plastic potential. Results showed that the flow rule postulate, based in the plastic potential, could be considered as valid for stress states relatively far from the loading point. In the vicinity of the loading point, the direction of the plastic strain increment vector ceases to be unique. This behaviour, which is an original feature of ductile powders mechanical behaviour, was attributed to the anisotropic strain-hardening processes at stake, related to the anisotropic formation of contact surfaces between particles. The drop in mechanical properties related to dilatancy was also studied.
20

Étude expérimentale et théorique de l’effet de la vitesse de coupe sur la forabilité des roches sous pression de boue / Experimental and theoretical study of rate effect on rocks drillability at bottom-hole pressure

Amri, Mohamed 08 July 2016 (has links)
L'optimisation des systèmes de forage nécessite une meilleure compréhension des vibrations indésirables comme le stick-slip. Ce phénomène vibratoire, qui affecte principalement les outils PDC (Polycristalline Diamond Compact), met en péril l'intégrité des équipements de forage et réduit considérablement la vitesse de pénétration de l'outil. Plusieurs travaux ont été menés ces dernières années pour déterminer ses origines. Les observations réalisées en fond de puits montrent que ces oscillations s'accompagnent systématiquement d'une baisse du couple à l'outil en fonction de sa vitesse de rotation. De nombreux groupes de recherche attribuent cette baisse de performance à l'occurrence du stick-slip.L'objectif de ce travail est de développer un modèle élémentaire de coupe qui permet d'analyser l'effet de la vitesse de coupe sur la forabilité des roches dans des conditions opératoires réalistes. Dans le cadre de cette thèse, nous avons réalisé une série d'essais de coupe en utilisant des taillants et des outils à échelle réelle dans trois roches de propriétés hydromécaniques différentes, et ceci à pression atmosphérique et sous pression de fluide. Les essais réalisés à pression atmosphérique montrent que les efforts élémentaires de forage augmentent avec la vitesse de coupe. Sous pression de boue, cet effet dépend largement de la perméabilité de la roche. En effet, nous avons observé que l'effet de la vitesse est relativement faible dans les formations de faible et de moyenne perméabilité sous pression de boue de 20 MPa. En revanche, cet effet augmente d'un ordre de grandeur dans les roches très perméables.Afin de comprendre ces observations, nous avons développé un modèle hydromécanique d'interaction taillant-roche construit à partir de la théorie de la poroélastoplasticité. D'abord, le problème est résolu analytiquement en s'inspirant des travaux existants. Par la suite, nous avons apporté une résolution numérique aux éléments finis des équations de la promécanique appliquées à la coupe des roches sous pression de boue. Les deux modèles montrent que le phénomène de dilatance génère une baisse de la pression de pore qui augmente la résistance de la roche au forage. Cette chute de pression dépend de la vitesse de coupe ainsi que des caractéristiques hydrodynamiques de la roche. Les résultats théoriques ont été comparés aux nombreux résultats expérimentaux obtenus dans le cadre de ce travail. / The optimization of the drilling practice requires a better understanding of drillstring harmful vibrations such as stick-slip. This form of torsional vibrations is a typical problem of PDC (Polycristalline Diamond Compact) drillbits. It can reduce the rate of penetration drastically and can raise fatigue of the drilling devices. Many attempts were carried out in the last years in order to determine the causes of stick-slip phenomenon. Field observations show that torque on bit decreases as a function of bit velocity during stick-slip oscillations. Hence, it is widely believed that this decreasing relationship is the root cause of stick-slip.The purpose of this work is to examine cutting speed influence on rock drillability as a function of operating conditions and hydromechanical properties of the drilled formation. For this, a set of drilling tests was performed in three sedimentary rocks of different permeability using a full scale PDC drillbit and a single PDC cutter. In the first step, dry tests were carried out at atmospheric pressure. As previously observed in literature, single-cutter tests showed that drilling forces increase with cutting velocity. In a second step, we performed the same experiments at 20 MPa bottom-hole pressure. It appears that rate effect on cutting forces in the medium and low-permeability rocks is relatively low. By contrast, rate effect in the highly permeable rock increases by one order of magnitude in comparison with dry experiments.In order to understand this phenomenon, a steady state solution of the cutting model is derived in the framework of the theory of poroelastoplasticity. The problem is firstly solved analytically using some assumptions derived from previous works. Then, a numerical resolution based on finite element method is presented to solve the fully coupled problem ensuring the satisfaction of poro-material physics basic equations. Using these two different approaches, we show that pore pressure in shear-dilatant rocks decreases as a function of cutting velocity depending on rock permeability and interstitial fluid properties. This change has a hardening effect resulting in an increase of rock drilling resistance. Comparison between theory and experience shows good agreements.

Page generated in 0.0312 seconds