Spelling suggestions: "subject:"dinâmicos"" "subject:"cinâmicos""
21 |
Conjuntos limite e bifurfações de campos de vetores suaves por partes no planoCarvalho, Tiago de [UNESP] 20 January 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:50Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-01-20Bitstream added on 2014-06-13T20:08:27Z : No. of bitstreams: 1
carvalho_t_dr_sjrp.pdf: 938185 bytes, checksum: 8bb0690451a86148640b2eb0a9e25bbd (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Este trabalho está relacionado com Teoria Qualitativa dos Sistemas Dinâmicos suaves por partes. Estudamos a existência de conjuntos limite, chamados ciclos canard, para esta classe de sistemas definidos no plano e analisamos quando ciclos limite de campos suaves convergem para estes. O conceito de Índice de Poincará foi generalizado para cmapos suaves por partes no plano. Seguindo o programa de Thpm-Smale, exibimos famílias a 3-parâmetros, bem como os respectivos diagramas de bifurcação, das singularidades planares denominadas Dobra-Sela e Dobra-Cúspide. Também aplicamos o Método Averaging de Primeira Ordem para quantificar os ciclos limite e ciclos canard de uma classe de campos lineares por partes no espaço n-dimensional. / This work is related to Qualitative Theory of non-smooth Dynamical Systems. We study the existence os limit sets, named canard cycles, for this class of planar systems. And we analyze when limit cycles of smooth vector fields converge to them. The concept of Poincaré Index was generalized for planar non-smooth systems. Following the Thom-Smale program we exhibit 3-parameter families, and its bifurcation diagrams, of the planar singularities called Fold-Saddle and Fold-Cusp. We apply the First Order Averaging Method to obtain an upper bound to the number of limit cycles and canard cycles for a special class of piecewise linear differential systems in the n-dimensional space.
|
22 |
Sistemas dinâmicos que triangularizam matrizesJucá, Joaby de Souza 28 February 2012 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2012. / Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2012-05-15T16:28:36Z
No. of bitstreams: 1
2012_JoabySouzaJuca.pdf: 505526 bytes, checksum: e4f9e194f0bbaf9186af48e7c4e48c78 (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2012-05-23T11:18:45Z (GMT) No. of bitstreams: 1
2012_JoabySouzaJuca.pdf: 505526 bytes, checksum: e4f9e194f0bbaf9186af48e7c4e48c78 (MD5) / Made available in DSpace on 2012-05-23T11:18:45Z (GMT). No. of bitstreams: 1
2012_JoabySouzaJuca.pdf: 505526 bytes, checksum: e4f9e194f0bbaf9186af48e7c4e48c78 (MD5) / Nesta dissertação procuramos entender por meio de sistemas dinâmicos a convergência
de um método iterativo que triangulariza e encontra os autovalores de uma matriz complexa, a saber, o método QR da análise numérica. Utilizamos apenas ferramentas de álgebra linear, cálculo em várias variáveis e ações de grupos topológicos. Vemos também que o método QR tem um análogo de tempo contínuo, dado por uma EDO matricial que triangulariza a condição inicial. Quando a condição inicial é hermitiana, verificamos que a altura da solução com respeito a certas matrizes diagonais é uma função de Lyapunov do fluxo. ______________________________________________________________________________ ABSTRACT / In this work we seek to understand through dynamical systems the convergence of an
iterative method that triangularizes and finds the eigenvalues of a complex matrix, the
so called QR method of numerical analysis. We only use tools from linear algebra,
multivariate calculus and topological group actions. We also see that the QR method has an continuous time analog, given by a ma-
trix differential equation which triangularizes the initial condition. When the initial condition is hermitian, we check that the height of the solution with respect to certain diagonal matrices is a Lyapunov function for the flow.
|
23 |
Modelos dinâmicos para a distribuição Poisson GeneralizadaSouza, Patrícia Oliveira de 01 July 2014 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2014. / Submitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2014-10-13T14:16:39Z
No. of bitstreams: 1
2014_PatriciaOliveiraSouza.pdf: 1025135 bytes, checksum: a276f800d39856c7a2cdda4764334f98 (MD5) / Approved for entry into archive by Tania Milca Carvalho Malheiros(tania@bce.unb.br) on 2014-10-20T11:49:28Z (GMT) No. of bitstreams: 1
2014_PatriciaOliveiraSouza.pdf: 1025135 bytes, checksum: a276f800d39856c7a2cdda4764334f98 (MD5) / Made available in DSpace on 2014-10-20T11:49:28Z (GMT). No. of bitstreams: 1
2014_PatriciaOliveiraSouza.pdf: 1025135 bytes, checksum: a276f800d39856c7a2cdda4764334f98 (MD5) / Nessa dissertação propomos um modelo dinâmico para casos em que a serie temporal e composta por dados de contagem. O modelo dinâmico para a distribuição Poisson Generalizada combina a classe dos modelos dinâmicos condicionalmente Gaussianos que, por sua vez, fornece uma estrutura flexí vel, permitindo que os parâmetros da distribuição dos dados possam ser modelados via MDLs normais e o esquema MCMC que une o amostrador de Gibbs com o algoritmo de Metropolis-Hastings de modo a proporcionar a amostragem das distribuições condicionais completas a posteriori. Desse modo nossa metodologia e capaz de tratar dados discretos correlacionados no tempo sendo poss vel realizar a estimacão dos estados latentes e previsão do desenvolvimento futuro. _______________________________________________________________________________________ ABSTRACT / In this dissertation, we propose a dynamic model for cases in which the time series
is composed of count data. The dynamic model for generalized Poisson distribution
combines the class of conditionally Gaussian dynamic models, which in turn provides a exible structure, allowing the parameters of the data distribution to be modeled via normal DLMs and the MCMC scheme that combines the Gibbs sampler with the Metropolis-Hastings algorithm to provide a complete sampling of the posteriori conditional distributions. Thus our methodology is capable of handling correlated discrete data in time and make the estimation of latent states and prediction of future development.
|
24 |
Estabilidade topológica para fluxos hiperbólicos / Topological stability for hyperbolic flowsChaves, Verônica de Jesus 21 August 2018 (has links)
Submitted by MARCOS LEANDRO TEIXEIRA DE OLIVEIRA (marcosteixeira@ufv.br) on 2018-10-31T13:27:17Z
No. of bitstreams: 1
texto completo.pdf: 716017 bytes, checksum: 418f1b78544f3d635042c028cdf765b3 (MD5) / Made available in DSpace on 2018-10-31T13:27:17Z (GMT). No. of bitstreams: 1
texto completo.pdf: 716017 bytes, checksum: 418f1b78544f3d635042c028cdf765b3 (MD5)
Previous issue date: 2018-08-21 / Neste trabalho pretendemos usar o conceito de estabilidade topológica para caracterizar os fluxos hiperbólicos.Para isso, apresentaremos o seguinte resultado: Todo fluxo hiperbólico φ é topologicamente estável em M, onde M é um espaço métrico conexo e compacto. Esse resultado foi provado por Choi e Park no artigo [4]. / In this work we intend to use the concept of topological stability to characterize the hyperbolic flows. For this, we will present the following result: All hyperbolic flow φ is topologically stable in M, where M is a connected and compact metric space. This result was proved by Choi and Park in article [4].
|
25 |
Técnicas ópticas na análise de fenómenos dinâmicosLage, Armindo Luís Vilar Soares January 1987 (has links)
Dissertação apresentada para obtenção do grau de Doutor na Faculdade de Engenharia da Universidade do Porto, sob a orientação do Prof. Doutor Olivério Delfim Dias Soares e do Prof. Doutor José Carlos Marques dos Santos
|
26 |
Metodologia splid : identificação de modelos lineares utilizando splines - caso monovariávelWaller, Dalciana Bressan January 2013 (has links)
A identificação de sistemas é uma etapa de fundamental importância para o entendimento de dinâmicas e o projeto de controladores. Diversas técnicas de identificação de sistemas LTI são consolidadas para uso, mas ainda apresentam lacunas para identificar modelos a partir de dados corrompidos com distúrbios não medidos. Outro aspecto é que características previamente conhecidos do sistema (p.ex., resposta inversa, sobre-elevação, etc.), nem sempre podem ser incorporadas ao modelo para auxiliar na obtenção de um modelo com essas metodologias. Como proposta para suprir essas limitações, é apresentada nesse trabalho, a metodologia Splid, que considera informações previamente conhecidas sobre o sistema e promove a utilização de curvas splines de interpolação para prever o comportamento da resposta de saída de diferentes sistemas LTI a uma perturbação tipo degrau, variando a altura dos nós da spline, variável a ser encontrada pela formação de um problema de otimização. Primeiramente foram realizados testes com sistemas de dinâmica conhecida, explorando graficamente as curvas de saída frente à perturbação tipo degrau unitário, obtidas aplicando-se diferentes tipos de splines, número de nós e dos parâmetros específicos de splines, com o intuito de balizar os parâmetros do algoritmo. Em seguida, a metodologia ajustada foi aplicada para identificar plantas com dinâmica conhecida, para fins de verificação da eficácia do método. Diferentes formulações de função objetivo foram testadas na etapa de identificação e validação dos dados, verificando o efeito da minimização do quadrado da derivada do erro e comparando com a abordagem tradicional, que contempla apenas o erro quadrático. Para consolidar os estudos desenvolvidos nestas etapas, a metodologia Splid foi aplicada na identificação do modelo de uma planta real de 2 tanques com aquecimento, cujos dados apresentavam distúrbios não compensados. / System identification is one of the most important issues for understanding system dynamics and control system design. Several methods for identification of linear systems have been broadly used until now. Nevertheless, these algorithms have difficulty to identify models from data containing non-measured disturbances, a very common situation in industry, and most methods do not consider the inclusion of known system characteristics into the identification algorithm, such as overshoot or inverse response. In order to overcome these situations, the Splid methodology is proposed, which employs splines to identify linear models. The idea is to obtain splines that well represent the step response of systems with different dynamic behaviors by varying the height of the spline knots, in an optimization problem. In the first part of this work, some tests were accomplished with known systems, in order to explore the splines that could represent the system step response, by selecting the number of knots, spline parameters and knots coordinates. The next step was to apply the Splid methodology to identify the model from a data set obtained with a perturbation design with these known systems, to check the validity of the method. It was tested different formulations of objective function: it was compared the results of minimizing the square of the derivative of the error with the conventional approach, of minimizing the square of error. In order to verify the methodology, it was applied to identify the model of a laboratorial plant of two heated tanks, which contained non-measured disturbs.
|
27 |
Medidas maximizadoras para sistemas dinâmicos fracamente hiperbólicosSouza, Rafael Rigão January 2004 (has links)
Dado um sistema dinâmico g : M → M e uma função A : M → R, chamada de observável, uma medida invariante v que satisfaz ƒ Adv = sup{ RAdµ ; µ ´e invariante para g} é chamada uma medida maximizadora. Neste trabalho vamos analisar medidas maximizadoras em duas classes de sistemas dinãmicos que apresentam pontos fixos indiferentes: Na primeira classe analisada, unidimensional, o sistema dinâmico ƒ é dado por um mapa expansor de grau 2 definido em [0, 1], apresentando derivada maior que 1 em todos os pontos com exceção do ponto fixo 0, onde tem derivada 1. O observável A é dado por uma função α-Hölder em cada ramo injetor, monótona em uma pequena vizinhança de zero. Na segunda classe analisada, bidimensional, o sistema dinâmico B é um mapa bijetor definido em [0, 1)×[0, 1) com o auxílio de uma função ƒ da classe anterior, apresentando ponto fixo indiferente na origem. Trata-se de uma variante fracamente hiperbólica da Baker Map. O observável A agora é uma função α-Hölder, e obedece a uma condição semelhante à monotonicidade do caso unidimensional em um vizinhança de (0, 0). Em ambos os casos mostraremos que a medida maximizadora, se for única, será uma medida unicamente ergódica. O passo mais importante nesta direção, que constitui-se em um resultado de interesse próprio, e que tomará a maior parte de nosso tempo, será, nos dois casos, a obtenção e o estudo da regularidade de uma função a valores reais S, chamada de função de subação, que obedecerá a desigualdade S o g ≥ S + A − m. Em ambos os casos mostraremos que S existe e é α-Hölder-contínua.
|
28 |
Estudo das propriedades de bilhares na presença de campos externosVasconcelos, Francisco Nailson Farias de January 2017 (has links)
VASCONCELOS, F. N. F. dos. Estudo das propriedades de bilhares na presença de campos externos. 2017. 59 f. Dissertação (Mestrado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Giordana Silva (giordana.nascimento@gmail.com) on 2017-04-12T20:56:17Z
No. of bitstreams: 1
2017_dis_fnfdvasconcelos.pdf: 16316342 bytes, checksum: 0d3b910763c139c2e62a6516ea5ae780 (MD5) / Approved for entry into archive by Giordana Silva (giordana.nascimento@gmail.com) on 2017-04-12T20:56:44Z (GMT) No. of bitstreams: 1
2017_dis_fnfdvasconcelos.pdf: 16316342 bytes, checksum: 0d3b910763c139c2e62a6516ea5ae780 (MD5) / Made available in DSpace on 2017-04-12T20:56:44Z (GMT). No. of bitstreams: 1
2017_dis_fnfdvasconcelos.pdf: 16316342 bytes, checksum: 0d3b910763c139c2e62a6516ea5ae780 (MD5)
Previous issue date: 2017 / The study of the chaotic properties of some complex systems has been largely developed from the technological advancement provided by computers. Among these systems, we can highlight the billiards, which, due to their simplicity and enormous applicability, they have stood out among the other models. In this work, we study the properties of some billiards, when subject to the action of an external field. Here the external field is represented by a velocity field, wich is obtained from the flow of a fluid. Such fluid exerts a drag force on the particle bounded by the boundary defining the billiard. In contrast to the other works done with billiards, we propose a totally numerical approach, taking into account several factors that could exercise influence on the particle dynamics, such as the elastic force that the particle suffers when it collides with the boundary, the outflow regime of the fluid, and the drag effect on the trajectory of the particle, caused by a force that is proportional to a potential of the velocity in the form F / vγ. From this approach we could observe a decay on the energy of the particle, which occurred in a linear form (γ = 1.0), polynomial of the second degree (γ = 1.5) and exponential (γ = 2.0). Moreover, as we analyzed the phase space of the systems (billiards), the effect of the dissipation parameter contributed to the emerging of a sea of chaos in some cases, and also to the appearance of an attractor, whose effect also originates from the action of the external field. / O estudo de propriedades caóticas de alguns sistemas complexos vem se desenvolvendo amplamente a partir do avanço tecnológico proporcionado pelos computadores. Dentre esses sistemas, podemos ressaltar os bilhares, que devido a sua simplicidade e enorme aplicabilidade vem se destacando dentre os demais modelos. Neste trabalho, estudamos as propriedades de alguns bilhares sujeitos a ação de um campo externo. Aqui, o campo externo é representado por meio de um campo de velocidade que é obtido a partir do escoamento de um fluido. Este fluido exerce uma força de arrasto sobre a partícula que encontra-se confinada pela fronteira que define o bilhar. Ao contrário dos outros trabalhos realizados com bilhares, propomos uma abordagem totalmente numérica levando em consideração aos vários fatores que poderiam influenciar na dinâmica da partícula, como por exemplo, a força elástica que a partícula sofre ao colidir com a fronteira, o regime de escoamento do fluido e o efeito do arraste na trajetória da partícula, causado por
uma força que é proporcional a uma potência da velocidade na forma F / vγ. A partir desta abordagem, foi possível observar um decaimento na energia da partícula, que se deu de forma linear (γ = 1:0), polinomial do segundo grau (γ = 1:5) e exponencial (γ = 2:0). Além disso, quando analisamos o espaço de fase dos sistemas (bilhares), o efeito do parâmetro dissipativo contribuiu para o surgimento de um mar de caos em
alguns casos, e ainda, para o surgimento de um atrator, cujo efeito é oriundo também da ação do campo externo.
|
29 |
Sobre fluxos expansivos em superfícies / About expansive flows in surfaceCueto Ureta, José Antonio 17 February 2017 (has links)
Submitted by Reginaldo Soares de Freitas (reginaldo.freitas@ufv.br) on 2017-07-24T12:28:27Z
No. of bitstreams: 1
texto completo.pdf: 2440708 bytes, checksum: 3f23d1f9c5eb3276c92e6104397e6eff (MD5) / Made available in DSpace on 2017-07-24T12:28:27Z (GMT). No. of bitstreams: 1
texto completo.pdf: 2440708 bytes, checksum: 3f23d1f9c5eb3276c92e6104397e6eff (MD5)
Previous issue date: 2017-02-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / No presente trabalho estudaremos algumas definições de fluxos expansivos, suas relações entre elas e com o auxílio de alguma delas provaremos dois teoremas; um de caracterização de fluxos expansivos sobre superfícies compactas, e um outro sobre a caracterização das superfícies compactas que suportam fluxos expansivos; estes resultados são devidos a A. Artigue. / In the present work we will study some definitions of expansive flow, the relations between them and with the help of some of them we will prove two theorems; the first characterize the expansive flows on compact surfaces, and the other is a topological characterization of compact surfaces that support expansive flows; These results are due to A. Artigue.
|
30 |
Metodologia splid : identificação de modelos lineares utilizando splines - caso monovariávelWaller, Dalciana Bressan January 2013 (has links)
A identificação de sistemas é uma etapa de fundamental importância para o entendimento de dinâmicas e o projeto de controladores. Diversas técnicas de identificação de sistemas LTI são consolidadas para uso, mas ainda apresentam lacunas para identificar modelos a partir de dados corrompidos com distúrbios não medidos. Outro aspecto é que características previamente conhecidos do sistema (p.ex., resposta inversa, sobre-elevação, etc.), nem sempre podem ser incorporadas ao modelo para auxiliar na obtenção de um modelo com essas metodologias. Como proposta para suprir essas limitações, é apresentada nesse trabalho, a metodologia Splid, que considera informações previamente conhecidas sobre o sistema e promove a utilização de curvas splines de interpolação para prever o comportamento da resposta de saída de diferentes sistemas LTI a uma perturbação tipo degrau, variando a altura dos nós da spline, variável a ser encontrada pela formação de um problema de otimização. Primeiramente foram realizados testes com sistemas de dinâmica conhecida, explorando graficamente as curvas de saída frente à perturbação tipo degrau unitário, obtidas aplicando-se diferentes tipos de splines, número de nós e dos parâmetros específicos de splines, com o intuito de balizar os parâmetros do algoritmo. Em seguida, a metodologia ajustada foi aplicada para identificar plantas com dinâmica conhecida, para fins de verificação da eficácia do método. Diferentes formulações de função objetivo foram testadas na etapa de identificação e validação dos dados, verificando o efeito da minimização do quadrado da derivada do erro e comparando com a abordagem tradicional, que contempla apenas o erro quadrático. Para consolidar os estudos desenvolvidos nestas etapas, a metodologia Splid foi aplicada na identificação do modelo de uma planta real de 2 tanques com aquecimento, cujos dados apresentavam distúrbios não compensados. / System identification is one of the most important issues for understanding system dynamics and control system design. Several methods for identification of linear systems have been broadly used until now. Nevertheless, these algorithms have difficulty to identify models from data containing non-measured disturbances, a very common situation in industry, and most methods do not consider the inclusion of known system characteristics into the identification algorithm, such as overshoot or inverse response. In order to overcome these situations, the Splid methodology is proposed, which employs splines to identify linear models. The idea is to obtain splines that well represent the step response of systems with different dynamic behaviors by varying the height of the spline knots, in an optimization problem. In the first part of this work, some tests were accomplished with known systems, in order to explore the splines that could represent the system step response, by selecting the number of knots, spline parameters and knots coordinates. The next step was to apply the Splid methodology to identify the model from a data set obtained with a perturbation design with these known systems, to check the validity of the method. It was tested different formulations of objective function: it was compared the results of minimizing the square of the derivative of the error with the conventional approach, of minimizing the square of error. In order to verify the methodology, it was applied to identify the model of a laboratorial plant of two heated tanks, which contained non-measured disturbs.
|
Page generated in 0.0457 seconds