Spelling suggestions: "subject:"direct courrent"" "subject:"direct crurrent""
31 |
Direct-Current Power Flow Solvers and Energy Storage SizingTaheri Hosseinabadi, Sayedsina 07 May 2019 (has links)
In the modern power grid, the increasing penetration of intermittent energy sources like solar and wind into the comes with unsought challenges. With increasing smart grid directcurrent (DC) deployments in distribution feeders, microgrids, smart buildings, and highvoltage transmission, there is a need for better understanding the landscape of power flow (PF) solutions as well as for efficient PF solvers with performance guarantees. This thesis puts forth three approaches with complementary strengths towards coping with the PF task, consisting of solving a system on non-linear equations, in DC power systems. We consider a possibly meshed network hosting ZIP loads and constant-voltage/power generators. Uncertainty is another inevitable side-effect of a modern power grid with vast deployments of renewable generation. Since energy storage systems (ESS) can be employed to mitigate the effect of uncertainties, their energy and power ratings along with their charging control strategies become of vital importance for renewable energy producers. This thesis also deals with the task of sizing ESS under a model predictive control (MPC) operation for a single ESS used to smoothen out a random energy signal. To account for correlations in the energy signal and enable charging adjustments in response to real-time fluctuations, we adopt a linear charging policy, designed by minimizing the initial ESS investment plus the average operational cost. Since charging decisions become random, the energy and power limits are posed as chance constraints. The chance constraints are enforced in a distributionally robust fashion. The proposed scheme is contrasted to a charging policy under Gaussian uncertainties and a deterministic formulation. / M.S. / Power systems are undergoing major changes as more renewable energy resources are being deployed across their networks. Two of the major changes are the increase in direct-current (DC) generation and loads and making up for the uncertainty introduced by these resources. In this thesis, we have tackled these two important aspects; a DC power flow (PF) solver and an energy storage system (ESS) sizing under uncertainty. The three DC PF solvers proposed in this thesis exhibit complementary values and can handle a wide range of loads and generation types. We have also proposed a distributionally robust ESS sizing under model predictive control framework, capable of handling worst-case uncertainties.
|
32 |
A velocity regulated DC motor driven by an armature rectifier: effects of shaft twist and backlashNemura, Ronald Eddie January 1966 (has links)
The thesis shows a simplified representation for an armature rectifier driving a DC motor load. This representation was obtained from the nonlinear equations relating the output current of the armature rectifier into the DC motor as a function of the input control variable for continuous and discontinuous current conduction. Using this simplified representation, a velocity regulator with gears connecting the DC motor to an inertia load was examined by the Bode diagram method to observe the effects of twist in the load shaft and backlash in the gears on the stability of the velocity regulator. Velocity damping and friction were neglected in the analysis. It was discovered that the armature rectifier operating in discontinuous current presented stability problems which are not encountered in a velocity regulator using a conventional rotating armature supply to drive a DC motor. Linear stabilization techniques were used to stabilize the control system to overcome the effects of twist in the load shaft and backlash in the gears for both continuous and discontinuous conduction of the armature rectifier. / M.S.
|
33 |
Design, analysis and control of multiphase flux regulated permanent magnet brushless DC motor drivesGan, Jinyun., 干金云. January 2004 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
34 |
Direct current conductor corona modelling and metrologyOtto, Abraham Johannes 12 1900 (has links)
Thesis (PhD (Electrical and Electronic Engineering))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: Prospects of up-rating existing high voltage direct current (HVDC) transmission schemes, as
well as the conversion of existing alternating current (AC) to direct current (DC) lines and the
development of new HVDC schemes in sub-Saharan Africa, have led to renewed interest in DC
research. The radio interference (RI), audible noise (AN) and corona loss (CL) performance of
HVDC transmission lines are critical factors when assessing the reliability of the line design.
The RI performance is especially important when considering the successful transmission of the
carrier signal of the power line carrier (PLC) system. The PLC system is the main form of
communication between teleprotection devices on the Cahora Bassa HVDC scheme.
The aim of the dissertation is to devise modelling as well as metrological techniques to characterise
DC conductor corona. A particle-in-cell (PIC) computational code is developed to
gain a better understanding of the physical processes that occur during corona events. The
numerical code makes use of the charge simulation method (CSM) and nite element method
(FEM) to solve for the Laplace and Poisson eld equations. Higher-order basis functions are
implemented to obtain a more accurate solution to the Poisson equation. The computational
tool yields insight into the mathematical models for the various ionization, attachment and
electron avalanche processes that give rise to corona currents. Together with a designed and
developed electrometer-type circuit, the numerical code assists the visualisation of the space charge particle dynamics that form in the electrode gap during corona events. The metrological techniques consider the wideband time domain (TD) as well as the frequency
domain (FD) information of the measured corona pulses in the presence of noise. These are
then compared to the narrowband CISPR standard measurements centred around 500kHz. The
importance of impedance matching when attempting to derive a wideband excitation function
is investigated. The TD measurements are quite distinct from the well-published FD measurements,
and consider the pulse shape, pulse spectrum and pulse repetition rates. The use of
three possible conductor corona test methods to study direct current conductor RI performance
under both positive and negative polarities is investigated at high altitude in this dissertation.
These include a small corona cage, a short test line and the Eskom Megawatt Park large outdoor
corona cage. Derived wideband and narrowband monopolar DC RI excitation functions at
500kHz are consolidated with existing radio noise (RN) measurement protocols and prediction
methods.
The use of a corona cage to derive excitation functions for monopolar RI predictions is explored
and it is shown that a small corona cage, due to the build-up of space charge in the
small distance between the electrodes, cannot be used to predict the RI levels on HVDC transmission
lines accurately. As a consequence of the physics, computational modelling and both
frequency and time domain measurements, it is now possible to explain why a small cage system
prevents the accurate RI prediction on transmission lines. The large outdoor corona cage and
short test line RI performance predictions agree with existing empirical prediction formulas. / AFRIKAANSE OPSOMMING: Vooruitsigte van die opgradering van bestaande hoogspanningsgelykstroom transmissielyn skemas,
asook die omkering van bestaande wisselstroom na gelykstroom lyne en die ontwikkeling
van nuwe hoogspanningsgelykstroom skemas in sub-Sahara Afrika, het gelei to hernude belangstelling
in gelykstroomnavorsing. Die korona-werkverrigting van hoogspanningsgelykstroom
oorshoofselyne in terme van radiosteuring, hoorbare-geraas en koronaverliese is kritiese faktore
om in aanmerking te neem wanneer die betroubaarheid van die lynontwerp geëvalueer word.
Die radiosteuring-werkverrigting is veral van belang tot die suksesvolle oordrag van die kraglyndragolf
draersein wat die hoof kommunikasievorm tussen beskermingstoerusting op die Cahora
Bassa transmissielyn skema is.
Die doel van hierdie proefskrif is om modellering- sowel as meettegnieke te ontwerp om gelykstroomgeleierkorona
te karakteriseer. 'n Partikel-in-sel numeriese kode is ontwikkel om 'n beter
begrip te verkry van die siese prosesse gedurende koronagebeure. Die numeriese kode maak
gebruik van die lading-simulasiemetode, sowel as die eindige element metode om die Laplace
en Poisson veldvergelykings op te los. Hoër-orde basisfunksies is geimplimenteer om 'n meer
akkurate oplossing vir die Poisson vergelyking te verkry. Die numeriese kode bied insig tot die
wiskundige modelle vir die verskeie ionisasie-, aanhegtings- en lawineprosesse wat lei tot koronastrome
in die area om die hoogspanningsgeleier. Die numeriese kode, saam met 'n elektro-meter wat ontwerp en ontwikkel is, dra by tot die begrip van die ruimtelading partikeldinamika
wat onstaan in die elektrodegaping gedurende koronagebeure.
Die meettegnieke neem die wyeband tydgebied- en frekwensiegebiedinformasie van die koronapulse
in ag in die teenwoordigheid van geraas. Dit word dan vergelyk met die nouband CISPR
meetstandaard vir 'n frekwensie van 500kHz. Die belangrikheid van impedansie-aanpassing
vir wyeband metings met die doel om opwekkingsfunksies af te lei, word ondersoek. Die tydgebiedmetings
verskil van die algemene frekwensiegebiedmetings, en ondersoek die pulsvorm,
-spektrum en -herhalingskoers. Die gebruik van drie moontlike koronageleier-toetsmetodes om
gelykstroom radiosteurings-werkverrigting vir positiewe en negatiewe polariteite te bestudeer by
hoë vlakke bo seespieël word ondersoek in die proefskrif. Dit sluit in 'n klein koronakou, 'n kort
toetslyn en die Eskom Megawatt Park groot buitelug-koronakou. Afgeleide wye- en nouband
monopolêre gelykstroom radiosteuring opwekkingsfunksies by 500kHz word gekonsolideer met
bestaande radioruis metingsprotokolle en voorspellingsmetodes.
Die gebruik van 'n koronakou om opwekkingsfunksies af te lei vir monopolêre radiosteuringvoorspellings
is ondersoek en daar is gevind dat 'n klein koronakou nie gebruik kan word om radiosteuringvlakke
op hoogspanningsgelykstroom transmissielyne akkuraat te voorspel nie. Dit is as
gevolg van die opbou van ruimtelading in die klein elektrodegaping. Met behulp van die sika,
numeriese modellering en beide die frekwensie- en tydgebiedmetings, is dit nou moontlik om te
verklaar waarom die klein koronakou die akkurate radiosteuringvoorspellings op transmissielyne
onmoontlik maak. Die groot buitelug-koronakou en kort toetslyn radiosteuringvoorspellings
stem ooreen met bestaande empiriese voorspellings formules.
|
35 |
Development Of An Application Specific Parallel Processing Real-Time System For MTDC System ControlShyam, V 05 1900 (has links) (PDF)
No description available.
|
36 |
DC microgrids: review and applicationsBlasi, Bronson Richard January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Fred Hasler / This paper discusses a brief history of electricity, specifically alternating current (AC) and direct current (DC), and how the current standard of AC distribution has been reached. DC power was first produced in 1800, but the shift to AC occurred in the 1880’s with the advent of the transformer. Because the decisions for distribution were made over 100 years ago, it could be time to rethink the standards of power distribution.
Compared to traditional AC distribution, DC microgrids are significantly more energy efficient when implemented with distributed generation. Distributed generation, or on-site generation from photovoltaic panels, wind turbines, fuel cells, or microturbines, is more efficient when the power is transmitted by DC. DC generation, paired with the growing DC load profile, increases energy savings by utilizing DC architecture and eliminating wasteful conversions. Energy savings would result from a lower grid strain and more efficient utilization of the utility grid. DC distribution results in a more reliable electrical service due to short transmission distances, high service reliability when paired with on-site generation, and efficient storage.
Occupant safety is a perceived concern with DC microgrids due to the lack of knowledge and familiarity in regards to these systems. However, with proper regulation and design standards, building occupants never encounter voltage higher than 24VDC, which is significantly safer than existing 120VAC in the United States.
DC Microgrids have several disadvantages such as higher initial cost due, in part, to unfamiliarity of the system as well as a general lack of code recognition and efficiency metric recognition leading to difficult certification and code compliance.
Case studies are cited in this paper to demonstrate energy reduction possibilities due to the lack of modeling ability in current energy analysis programs and demonstrated energy savings of approximately 20%.
It was concluded that continued advancement in code development will come from pressure to increase energy efficiency. This pressure, paired with the standardization of a 24VDC plug and socket, will cause substantial increases in DC microgrid usage in the next 10 years.
|
37 |
An investigation of subsynchronous oscillation of AC/DC power systems: modeling and analysisYu, Chang., 余暢. January 2006 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
38 |
Chaoization and stabilization of electric motor drives and their industrial applicationsWang, Zheng, 王政 January 2008 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
39 |
Imaging the neuromodulation of painLin, Richard L. January 2011 (has links)
Chronic pain is a major health problem that affects approximately 20% of the adult population, but only 60% of its patients find success in managing their condition. As an alternative therapeutic tool, transcranial direct current stimulation (tDCS) has appeared promising in recent literature, with several papers using the left dorsolateral prefrontal cortex (L-DLPFC) as the stimulation target due to its inherent role in pain modulation. However, the underlying mechanisms of this treatment have never been directly investigated. The thesis intends to explore this question through the application of a combination of tDCS, functional and structural imaging, and an ongoing pain model. The first study investigated the task-free effects of L-DLPFC tDCS by using concurrent arterial spin labeling (ASL) perfusion imaging. Anodal (excitatory) tDCS was associated with an increase in regional cerebral blood flow (rCBF) of L-DLPFC, while cathodal (inhibitory) tDCS was related to a relative decrease. Regions connected to L-DLPFC, such as thalamus and primary somatosensory cortex, also experienced significant perfusion changes. Further analyses found modulations of L-DLPFC–thalamic functional correlations, which was particularly relevant due to the importance of the thalamus in antinociceptive processing. To understand pain neuromodulation, a robust ongoing pain model was required to serve as a platform for the investigation. Thus, electrical, thermal, and capsaicin stimuli were tested in a series of studies. The former two did not produce an ongoing pain sensation, thus failing to replicate a chronic pain experience on healthy volunteers. However, topical application of capsaicin appeared to induce such a response, which entailed a pain intensity rating between 5 and 7 on a 0-10 visual analogue scale for at least 30 minutes. Careful screening ensued to select capsaicin responders from the cohort, who served as the research volunteers for the remainder of the thesis. Combining these two studies, rCBF changes associated with tDCS-induced pain neuromodulation were then directly investigated with concurrent ASL and the above capsaicin model. Behavioral measurements suggested a significant reduction in pain intensity for the anodal tDCS condition over the sham tDCS condition, which corroborated the results from previous pain-tDCS studies. Modulations of L-DLPFC and thalamic rCBF continued to be observed with anodal tDCS. In addition, the activity of the posterior insula, an indicator of ongoing pain intensity, was higher for the sham tDCS condition than for the anodal tDCS condition. The final study explored the importance of L-DLPFC–thalamic connection in pain modulation with diffusion tensor imaging (DTI). Probability tractography and tract-based spatial statistics (TBSS) were used to extract the mean fractional anisotropy (FA) of the tract. As hypothesized, the mean FA values within this tract positively correlated with the pain intensity changes, which indicated that individuals with stronger structural connection enjoyed greater alleviation from L-DLPFC tDCS. As a whole, the above studies suggest that the clinical efficacy of L-DLPFC tDCS in pain treatment may arise from the resulting top-down modulation of the thalamus. Further studies on chronic pain patients may offer further verification of the mechanism that has been proposed in this thesis.
|
40 |
Transcranial stimulation to enhance cortical plasticity in the healthy and stroke-affected motor systemAmadi, Ugwechi January 2012 (has links)
This thesis investigated transcranial direct current stimulation (tDCS) as applied to the motor system, and its ability to modulate underlying cortical processes and resultant motor behaviours. Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) were employed to assess the extent to which tDCS induces quantifiable changes in neural structure and function in controls and stroke patients. Modifications in the connectivity of intrinsic functional networks following tDCS application were examined using resting state fMRI. Polarity-specific changes were found: cathodal (inhibitory) tDCS increased the strength of the default mode network and increased functional coupling between major nodes within the motor network. No significant effects were found following anodal (excitatory) tDCS. Although anodal tDCS elicited only subtle changes in resting activity, it is known to produce robust modifications of behaviour. Single and paired-pulse TMS were used to investigate the neurophysiological underpinnings of these changes. Consistent with the theory of homeostatic plasticity, anodal tDCS applied prior to task performance increased GABAA-mediated cortical inhibition and worsened behaviour. The specificity of these changes suggests a central role for the mechanism of surround inhibition. A longitudinal clinical trial in chronic stroke patients was conducted to determine the utility of tDCS as an adjunct in motor rehabilitation. Serial MRI scans revealed that, when combined with motor training, anodal tDCS increased functional activity and grey matter in primarily ipsilesional motor areas. These brain changes were correlated with behavioural improvements in the stroke-affected upper limb. The laterality of connectivity at baseline, as measured by resting state activity and corticospinal tract integrity, was predictive of response to the rehabilitation program, particularly in those stroke patients who received tDCS. Asymmetry favouring the contralesional hemisphere predicted greater behavioural gains. Such results underscore the importance of re-normalisation of structure and functional activity toward the lesioned hemisphere in stroke rehabilitation.
|
Page generated in 0.0681 seconds