• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 8
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 23
  • 23
  • 23
  • 18
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Desempenho de um motor ciclo Otto com injeção direta de gás natural / Performance of a motor Otto cycle with direct natural gas injection

Cleiton Rubens Formiga Barbosa 04 April 1997 (has links)
Um motor ciclo Otto funcionando com injeção direta de gás natural, durante o curso de admissão, foi submetido a ensaios de plena carga em um dinamômetro corrente de Foucaut. Os resultados obtidos revelam um aumento de eficiência volumétrica do motor com injeção direta de GNC em relação à injeção indireta de GNC realizada no coletor de admissão, a montante da borboleta do acelerador. Na adaptação para operação com injeção direta de gás natural, as características técnicas do motor não foram alteradas. Um conjunto de injeção direta de gás natural, com gerenciamento eletrônico, foi inserido no cabeçote do motor de testes. Mantendo-se a pressão da linha de alimentação de gás natural constante, através de uma válvula redutora, a quantidade de combustível injetada no cilindro foi ajustada variando-se o tempo de abertura da válvula elétrica injetora de combustível. Dados de desempenho do motor são comparados, destacando-se os fatores que contribuem para este aumento relativo de eficiência volumétrica. Discute-se ainda, modificações a serem implementadas no motor visando maximizar sua potência com injeção direta de gás natural / Otto cycle engine direct injection natural gas, during the inlet stroke, submitted to runs with full power in a Foucaut dynamometer. The results obtained show a increase in the volumetric efficiency of the engine with natural gas direct injection when compared which natural gas injection apllied in the inlet manifold, upstream of the throttle butterfly. ln the conversion to natural gas direct injection, the technical characteristics of the were not changed. A kit for natural gas direct injection, with eletronic managment, was located on the cylinder head of the test engine. Maintaining the pressure constant in the natural gas fuel line, using a reduction valve. The mass of fuel injected into the cylinder was regulated, varying the opening time of the solenoid valve fuel injector. Engine performance data is compared, emphasizing the factors that contribute to this increase in relative volumetric efficiency. Modifications to be made to maximize the power of the engine with natural gas direct injection
32

Emissions and Climate Impacts of Aerosol Emissions from Cookstoves and Gasoline Direct Injection Vehicles

Saliba, Georges 01 February 2018 (has links)
Anthropogenic gas- and particle-phase emissions affect the climate by absorbing and scattering radiation, and have been linked to adverse health effects. Black carbon (BC), a by-product of incomplete combustion, is the most potent light-absorbing component of atmospheric aerosols, with a top-of-the atmosphere direct radiative forcing estimated to be only second to CO2. However, there is a large uncertainty associated with BC’s total direct and indirect radiative forcings due to uncertain source emissions and optical properties and complex interactions with clouds. In this dissertation we investigate the direct radiative impact of two of the most important sources of BC particles: biofuel combustion and vehicles. Together these sources contribute around 40% of the global atmospheric BC burden. Recently, both of these energy sources are undergoing rapid technology changes, and the climate impacts from the emissions of these newly adopted technologies remain uncertain. We also investigate the role of atmospheric processing on the optical properties and growth rates of particles. This dissertation first assesses the climate impacts of aerosol emissions of two rapidly emerging technologies: improved cookstoves and gasoline direct injection (GDI) vehicles. We performed extensive measurements of gas- and particle emissions and optical properties of emissions from both these sources. Our data suggests that improved rocket cookstoves have, on average, a factor of two lower particulate matter (PM) emissions compared to traditional cookstoves but only a 4% climate benefits associated with their emissions. In contrast, we estimated a 30% climate benefit from switching traditional cookstoves to gasifier ones. Of all the stoves tested, charcoal stoves had the lowest emissions and climate impacts. Our data suggests the widespread deployment of improved cookstoves to replace existing, inefficient, traditional cookstoves will likely result in health and climate co-benefits. Similarly, we estimated that the rapid adoption of GDI vehicles to replace existing port fuel injection (PFI) vehicles will likely result in reduced warming from emissions. This is due to the higher fuel economy of GDI engines; we measured an average CO2 reduction of 57 g/mi, from switching engine technologies. GDI engine emissions had higher PM emissions compared to PFI engines, similar to previous findings. In addition, our data suggests that newer GDI engines have a factor of two lower PM emissions compared to older GDI engines. These improvements in emissions may enable GDI-equipped vehicles to meet the new Federal Tier 3 PM standard of 3.0 mg/mi without gasoline particulate filters (GPF, which would reduce their fuel economy). To better constrain the large uncertainty of radiative forcing associated with cookstove emissions, this dissertation examines emissions and optical properties from several cookstove and fuel combinations. We performed extensive laboratory measurements of the optical properties of fresh cookstove emissions using the newly developed firepower sweep protocol. Current model treatments of the optical properties of cookstove emissions assume: (1) complete internal mixture between BC and non-BC material and (2) absorption properties of organics based on parametrizations developed for biomass burning emissions. These assumptions do not accurately represent optical properties of fresh cookstove emissions. We developed new parametrizations of optical properties (BC-mass absorption cross section (MACBC), absorption angstrom exponent (AAE), and single scattering albedo (SSA)) of aerosol emissions from cookstoves as a function of the BC-to-PM mass ratio. These parametrizations are designed for use in climate models to more rigorously assess the global climate implications from adoption of improved stove technologies. Upon entering the atmosphere aerosol emissions undergo complex chemical transformations. Aerosol optical properties depend on their atmospheric processing which controls the amount of coating the particles accumulate and their lifetime. To assess the effects of coating on the optical properties, we performed targeted experiments using real world, size selected, BC particles emitted from a rocket improved cookstove, and coated with biogenic secondary organic aerosol (SOA) material. These experiments explicitly target to evaluate measurements and modeling using simple formulation like Mie theory. Measurements of MACBC and the mass scattering cross section (MSC) of coated BC particles were in good agreement with Mie predictions when the organic-to-BC mass ratio>5. Scattering (but not absorption) was sensitive to BC fractal-like morphology; Mie theory under-predicted measured scattering of fresh emissions. Our data suggest that Mie theory can be used in climate models to approximate the optical properties of coated BC particles emitted from cookstoves, if the mixing-state of BC particles is known. In this dissertation, we present initial evidence that particle growth rates depend on seed composition and gas-phase supersaturation. Current models do not account for seed-dependent growth rates. We conducted experiments to investigate the growth of diesel and biogenic SOA particles. Both seeds were exposed to the same gas-phase supersaturation, which allows us to accurately retrieve differences in growth rates and decouple the effects of surface activity and accommodation coefficients. We estimated that the accommodation coefficients of condensing material was 10% to 30% lower on the diesel particles compared to the SOA particles. Moreover, we measured larger surface activity of condensing material on the diesel particles, potentially due to less-miscible condensing vapors in the diesel particles compared to the SOA particles. Our data suggest that growth of BC (diesel) particles in the atmosphere is likely slower compared to SOA particles. Accurately representing these processes is important to estimate the lifetime and absorption enhancement from coated BC particles, as they compete with other particles for condensable vapors.
33

Experimental investigations into high-altitude relight of a gas turbine

Read, Robert William January 2008 (has links)
This thesis describes experiments to investigate high-altitude relight of a lean direct injection (LDI) combustor. The features that make LDI technology less polluting in terms of NOx compared to conventional combustors are expected to impede relight performance. Therefore an improved understanding of ignition behaviour is required to ensure that stringent relight requirements can be satisfied. Realistic operating conditions are simulated in a ground-based test facility. The application of laser diagnostics presents particular difficulties due to the large quantities ofliquid fuel that impinge on the combustor walls during relight. Advances are made in the application of planar laser-induced fluorescence (PLIF) to monitor fuel placement in a combustor under these conditions. A novel apparatus is developed to deliver a laser sheet to the combustion chamber while protecting all optical surfaces from contamination. The PLIF images are compared with the cold flow field obtained from CFD modelling. These results indicate that fuel becomes trapped inside the central recirculation zone in highconcentrations. High-speed flame imaging performed simultaneously with the PLIF measurements provides important insights into the motion and breakup of flame during relight. An algorithm developed to track the flame activity reveals that the initial spark kernel is convected downstream, before breaking apart and moving upstream towards a recovery origin close to the fuel injector. Analysis of many ignition events has revealed several distinct modes of ignition failure.
34

DEVELOPMENT OF MEASUREMENT AND VISUALIZATION TECHNIQUES FOR CHARACTERIZATION OF MIXING AND COMBUSTION PROCESSES WITH SURROGATE FUELS

Micó Reche, Carlos 18 December 2015 (has links)
[EN] The development and optimization of new combustion modes is nowadays an important research field, to reduce the pollutant emissions of the reciprocating internal combustion engines. Their development requires the use of a wide variety of experimental and theoretical tools, which make it possible to know and understand their fundamentals. In this context the main objective of this Thesis is framed: the development and optimization of measuring and visualization techniques, to reach the level of accuracy and detail required for current and future studies of that kind. The work has been based on the characterization of the diesel diffusion combustion to be able to focus the study on the methodological part, thanks to the extensive knowledge available on this combustion mode. The work has been divided in two main blocks. The first one is focused on the characterization of evaporation and air-fuel mixture formation processes. For this purpose, a new technique has been developed and applied, based on the light absorption by the fuel molecules (UV-VIS LAS), which allows measuring the vapour fuel local concentration within a diesel spray. It has been optimized to be applied under operating conditions similar to those found in a compression ignition engine with fuels whose optical properties are not optimal, but which are interesting for research due to its simplicity. Moreover, a new methodology has been developed for measuring the absorption coefficient of the fuels, under similar operating conditions (i.e. pressure and temperature) than those found within the combustion chamber of a compression ignition engine. Results have been analysed in detail, to be able to define the limitations and reliability of the methodology proposed. The second block corresponds to the characterization of the combustion process and the soot formation. For this purpose, a complex optical set-up has been developed which made it possible to simultaneously apply the three most used techniques that can be found in literature for soot measuring within a diesel flame: Laser Extinction Method, 2-Colour Pyrometry and Laser-Induced Incandescence. Results obtained by means of the three techniques have been compared in detail, not only to identify the main advantages and drawbacks of each technique, but also their reliability under different operating conditions. / [ES] El desarrollo y optimización de nuevos modos de combustión constituye actualmente un campo importante de investigación, para reducir la emisión de contaminantes en motores de combustión interna alternativos. Su desarrollo requiere del uso de gran variedad de herramientas experimentales y teóricas, que permitan conocer y comprender sus fundamentos. En este contexto se enmarca el objetivo principal de esta Tesis: la mejora y el desarrollo de técnicas de visualización y medida, para alcanzar el nivel de detalle y la precisión requeridos para estudios actuales y futuros de esta índole. El trabajo se ha basado en la caracterización de la combustión diésel por difusión para poder centrar el estudio en la parte metodológica, gracias al amplio conocimiento disponible sobre este modo de combustión. El trabajo se ha dividido en dos apartados principales. El primero de ellos se centra en la caracterización de los procesos de evaporación y formación de la mezcla aire-combustible. Para ello, se he desarrollado y puesto en práctica una técnica basada en la absorción de luz por parte de las moléculas de combustible (UV-VIS LAS), que permite medir la concentración local de combustible evaporado en el seno de un chorro diésel. Esta ha sido optimizada para ser aplicada en condiciones de operación semejantes a las de un motor de encendido por compresión con combustibles cuyas propiedades ópticas no son óptimas, pero que son de gran interés para investigación dada su simplicidad. Además, se ha desarrollado una metodología para la medida del coeficiente de absorción de los combustibles, bajo las mismas condiciones de operación (presión y temperatura) que las que se dan en la cámara de combustión de un motor de encendido por compresión. Los resultados obtenidos se han analizado con detalle, para poder definir los límites y la fiabilidad de la metodología propuesta. El segundo apartado corresponde a la caracterización del proceso de combustión y la formación de hollín. Para ello, se ha desarrollado un montaje óptico complejo que ha permitido aplicar de forma simultánea las tres técnicas más utilizadas en la literatura para la medida del hollín en una llama diésel: Método de Extinción Láser, Pirometría 2-Colores e Incandescencia Inducida por Láser. Los resultados obtenidos mediante las tres técnicas han sido comparados detalladamente, no sólo para identificar las principales ventajas e inconvenientes de cada técnica, sino también la fiabilidad de las mismas para distintas condiciones de operación. / [CAT] El desenvolupament y optimització de nous modes de combustió constitueixen actualment un camp important d'investigació, para reduir la emissió de contaminants en motors de combustió internat alternatius. El seu desenvolupament requereix del us de gran varietat de ferramentes experimentals i teòriques, que permeten conèixer i comprendre els seus fonaments. En este context s'emmarca l'objectiu principal d'esta tesi: la millora i el desenvolupament de tècniques de visualització i mesura, per a conseguir el nivell de detall i la precisió requerits per a estudis actuals i futurs d'esta índole. El treball s'ha basat en la caracterització de la combustió dièsel per difusió per a poder centrar l'estudi en la part metodològica, gràcies a l'ampli coneixement disponible sobre este mode de combustió. El treball s'ha dividit en dos apartats principals. El primer d'ells se centra en la caracterització dels processos d'evaporació i formació de la mescla aire-combustible. Per això, s'ha desenvolupat i posat en pràctica una tècnica basada en la absorció de llum per part de les molècules de combustible (UV-VIS LAS), que permet mesurar la concentració local de combustible evaporat en el si d'un esprai dièsel. Esta ha sigut optimitzada per a ser aplicada en condicions d'operació semblants a les d'un motor d'encesa per compressió i combustibles amb propietats òptiques que no son les òptimes, però els quals són de gran interés en investigació donada la seua simplicitat. A més, s'ha desenvolupat una metodologia per a la mesura del coeficient d'absorció dels combustibles, a les mateixes condicions d'operació (pressió i temperatura) que les que es donen en la cambra de combustió d'un motor d'encesa per compressió. Els resultats obtinguts s'han analitzat amb detall, per a poder definir els límits i la fiabilitat de la metodologia proposada. El segon apartat correspon a la caracterització del procés de combustió i la formació de sutja. Per a això, s'ha desenvolupat un muntatge òptic complex que permés aplicar de forma simultània les tres tècniques més utilitzades en la literatura per a la mesura de la sutja en una flama dièsel: Mètode d'Extinció Làser, Pirometria 2-Colors i Incandescència Induïda per Làser. Els resultats obtinguts per mitjà de les tres tècniques han sigut comparats detalladament, no sols per a identificar els principals avantatges i inconvenients de cada tècnica, sinó també la fiabilitat d'aquestes per a distintes condicions d'operació. / Micó Reche, C. (2015). DEVELOPMENT OF MEASUREMENT AND VISUALIZATION TECHNIQUES FOR CHARACTERIZATION OF MIXING AND COMBUSTION PROCESSES WITH SURROGATE FUELS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58991 / TESIS
35

Atomization and mixing performance of swirl-venturi lean direct injection

Burkhalter, Matthew W. 01 December 2014 (has links)
This paper investigated the effects of swirl number and momentum ratio on the atomization and mixing performance of Swirl-Venturi Lean Direct Injection technology. Mie scattering of liquid water, was used to identify the location of water droplets in a cross section of the injector spray. Experiments were performed with three air swirlers with vane angles of 45, 52 and 60 degrees. The swirl number varied from 0.58 to 1.0 and air-to-liquid ratios from 15.8 to 35.6. A transition was observed in the liquid spray distribution for the 52 degree case, which unexpectedly produced twice as much signal than the 45 and 60 degree cases. The main cause of this increased signal may be due to instabilities in the flow when transitioning from low to high swirl states. The results from investigation of swirl number it was found that the spray pattern for is sensitive to swirl intensity. Two flow states were observed for a lower and higher swirl flow as well as a transition state that occurred with the lower swirl state. This work may aid in the specific inquiry of physical mechanisms relating to the effect of flow states on spray distribution. It is found that improved atomization and mixing performance are a result of increase in swirl number.
36

System Simulation of Combustion in Direct-Injection Spark-Ignition Engines / Simulation système de la combustion dans les moteurs à allumage commandé à injection directe

Pellegrino, Federico 17 October 2019 (has links)
La présence de contraintes de plus en plus strictes sur les émissions de polluants on poussé les contruteurs vers l'injection directe essence (IDE), afin d'améliorer les performances et réduire la consommation de carburant et les émissions des moteurs à combustion interne. Par conséquent, de nouveaux défis sont introduits en termes d'optimisation de la combustion, en raison d'une plus complexe phénomenologie tandis que les modéles système demande des paramètres de calibration supplémentaires.Cette thèse présente le développement et la validation d'un modèle zéro-dimensionnel (0D) de combustion en IDE pour application en simulation système. Le modèle proposé détaille la physique de l'atomisation, et évaporation des gouttes, de la préparation du mélange air/carburant, de la propagation de flamme dans un mélange non-homogène ainsi que l'intéraction entre ces phénomènes.La phase liquide est discretisés en paquets groupant des gouttes de la même taille.Un modèle d'atomisation empirique basé sur la vitesse d'injection, les propriétés du carburant et les conditions thermodynamiques fournit les diamètres initiaux. Un modèle Lagrangien détaillant une dynamique de trainée/inértie, échange thermique et convection forcée décrit la pénétration liquide et l'evaporation des paquets. La formation du mélange air/carburant est décrite avec une PDF qui discretise la charge en un mécanisme de classes intéragissant les unes avec les autres et avec les paquets de gouttes. La propagation de flamme prend en compte les effets de l'hétérogéneité du mélange sur la vitesse de flamme et la formation des polluants.Le modèle proposé a été implémenté dans la plateforme Simcenter Amesim, dédiée á la modélisation de systémes multi-physiques, et intégrée dans le modèle de combustion essence CFM1D, de la librairie IFP-Engine.Des approche de modélisation de l'evaporation de carburant, de la dynamique de spray et de la formation du mélange, inspirés de la literature sur les moteurs Diesel, ont été adaptés aux conditions IDE.Le modèle a initialement été validé sur des mesures et des simulations RANS 3D réalisées avec le code IFP-C3D, d'une bombe d'injection à volume constant.Un vortex de tumble, dans un premier temps, et des variations rapides du voulume de la chambre ensuite, ont été ajoutés aux expériments numériques afin d'évaluer la réponse du modèle à l'aérodynamique dans la chambre de combustion et à des conditions thermodynamiques variables, en termes d'évaporation, développement du spray et distribution de la richesse. Des simulations d'injections dans un moteur entraîné,dont les résultats ont été comparés avec des mesures et des calculs CDF,complètent la validation du modèle avec à la fois des conditions thermodynamiques variable et de l'aérodynamique. / Future constraints on pollutant emissions pushed car manufacturers towards gasoline direct injection (GDI) technologies to improve engine performances and reduce fuel consumption and emissions. New challenges are then introduced in terms of combustion optimization due to a more complex phenomenology while system models require additional calibration parameters.This PhD work presents the development and validation of a Zero-Dimensional (0D) model of GDI combustion for system simulation. The proposed model focuses on physics of atomization and drop evaporation, fuel/air mixing, flame propagation in heterogeneous charge and mutual interaction between these phenomena.The liquid phase is discretized in parcels grouping drops of the same size. An empirical atomization model based on injection velocity, fuel characteristics and thermodynamic conditions provides initial diameters. A Lagrangian model including drag-inertia dynamics, heat-up and forced convection describes drop parcel penetration and evaporation. Fuel / air mixing is described using a discrete Probability Density Function (PDF) approach, based on constant-mixture-fraction classes interacting with each other and with the drop parcels. Flame propagation takes into account mixture heterogeneity effects on flame speed and pollutant production is modelled.The model was implemented in the Simcenter Amesim platform for multi-physical modelling and integrated in a generic Spark Ignition (SI) combustion chamber submodel, CFM1D, from the IFP-Engine library.Fuel evaporation, spray dynamics and mixture formation modelling approaches, inspired by literature on Diesel engines, were adapted to GDI operating conditions. The model was first validated on a constant-volume vessel with quiescent gas in different thermodynamic conditions by means of experiments and 3D RANS CFD simulations performed with IFP-C3D. A tumble vortex in a constant volume vessel, in a first time, and rapid variations of the vessel volume, in a second time, were then added to the numerical experiment in order to test the model response to in-cylinder flow aerodynamics and variable thermodynamic conditions, respectively, in terms of fuel evaporation, spray development and fuel/air mixing and equivalence ratio distribution. Computations of fuel injections in a motored engine complete the model validation campaign in variable thermodynamic conditions and with realistic aerodynamics and the results were compared to both experiments and CFD computations.
37

Simulating the Influence of Injection Timing, Premixed Ratio, and Inlet Temperature on Natural Gas / Diesel Dual-Fuel HCCI Combustion in a Diesel Engine

Ghomashi, Hossein, Olley, Peter, Mason, Byron A., Ebrahimi, Kambiz M. 01 1900 (has links)
Yes / Dual-fuel HCCI engines allow a relatively small quantity of diesel fuel to be used to ignite a variety of fuels such as natural gas or methane in HCCI mode. The gaseous fuel is mixed with the incoming air, and diesel fuel is sprayed into the cylinder by direct injection. Mathematical modelling is used to investigate the effects of parameters such as premixed ratio (fuel ratio) and pilot fuel injection timing on combustion of a dual-fuel HCCI engines. A CFD package is used with AVL FIRE software to simulate dual-fuel HCCI combustion in detail. The results establish a suitable range of premixed ratio and liquid fuel injection timing for low levels of NOx, CO and HC emissions along with a reliable and efficient combustion. Dual-fuel HCCI mode can increase NOx emission with lower premixed ratios in comparison to normal HCCI engines, but it is shown that the NOx emission reduces above a certain level of the premixed ratio. Due to the requirement of homogenous mixing of liquid fuel with air, the liquid fuel injection is earlier than for diesel engines. It is shown that, with careful control of parameters, dual-fuel HCCI engines have lower emissions in comparison with conventional engines.
38

Model Based Investigation of Lean Gasoline PM and NOx Control

Shivaprasad, Shreyas January 2014 (has links)
No description available.
39

Computational Investigation of Optimal Heavy Fuel Direct Injection Spark Ignition in Rotary Engine

Benthara Wadumesthrige, Asela A. 23 September 2011 (has links)
No description available.
40

Investigation of High Pressure Combustion and Emissions Characteristics of a Lean Direct Injection Combustor Concept

Ahmed, Abdelallah 11 October 2016 (has links)
No description available.

Page generated in 0.0848 seconds