• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 20
  • 12
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dispersion and mixing of plumes in wall-bounded and isotropic turbulent flows

Nasseri Oskouie, Shahin 26 August 2016 (has links)
The dispersion and mixing of passive scalars released from two concentrated sources into open-channel and homogeneous isotropic turbulent flows are studied using direct numerical simulation (DNS). The simulations are conducted using two fully-parallelized in-house codes developed using the FORTRAN 90/95 programming language. A comparative study has been conducted to investigate the effects of the source separation distance, Reynolds number, relative length scales of the plume and turbulent flow, and source elevation on the dispersion and mixing of two plumes. For both flow configurations, four distinct stages in the downwind development of the cross correlation between the fluctuating concentration fields have been identified which feature zero, destructive and constructive interferences and a complete mixing state. Differences between the exceedance probability of concentrations for the single and total plumes are highlighted and analyzed, and the effects of destructive and constructive interference on the exceedance probabilities for the total plume are used to explain these differences. It is found that the relationship between the third- and fourth-order concentration moments and the second-order concentration moment can be well predicted using a clipped-gamma model. This leads to an interesting conclusion that all the higher-order (third-order and above) moments of the total concentration can be inferred from a knowledge of only the first- and second-order concentration moments of each single plume and of the cross correlation coefficient. From a spectral analysis, it is observed that there exists a range of `leading scales' at which the rate of turbulent mixing of the two plumes becomes the most efficient and the coherency spectrum of the plumes approaches the asymptotic value of unity quicker than at any other scales. / October 2016
2

Numerical study of flame dynamics

Petchenko, Arkady January 2007 (has links)
Modern industrial society is based on combustion with ever increasing standards on the efficiency of burning. One of the main combustion characteristics is the burning rate, which is influenced by intrinsic flame instabilities, external turbulence and flame interaction with walls of combustor and sound waves. In the present work we started with the problem how to include combustion along the vortex axis into the general theory of turbulent burning. We demonstrated that the most representative geometry for such problem is a hypothetic “tube” with rotating gaseous mixture. We obtained that burning in a vortex is similar to the bubble motion in an effective acceleration field created by the centrifugal force. If the intensity of the vortex is rather high then the flame speed is determined mostly by the velocity of the bubble. The results obtained complement the renormalization theory of turbulent burning. Using the results on flame propagation along a vortex we calculated the turbulent flame velocity, compared it to the experiments and found rather good agreement. All experiments on turbulent combustion in tubes inevitably involve flame interaction with walls. In the present thesis flame propagation in the geometry of a tube with nonslip walls has been widely studied numerically and analytically. We obtained that in the case of an open tube flame interaction with nonslip walls leads to the oscillating regime of burning. The oscillations are accompanied by variations of the curved flame shape and the velocity of flame propagation. If flame propagates from the closed tube end, then the flame front accelerates with no limit until the detonation is triggered. The above results make a good advance in solving one of the most difficult problems of combustion theory, the problem of deflagration to detonation transition. We developed the analytical theory of accelerating flames and found good agreement with results of direct numerical simulations. Also we performed analytical and numerical studies of another mechanism of flame acceleration caused by initial conditions. The flame ignited at the axis of a tube acquires a “finger” shape and accelerates. Still, such acceleration takes place for a rather short time until the flame reaches the tube wall. In the case of flame propagating from the open tube end to the closed one the flame front oscillates and therefore generates acoustic waves. The acoustic waves reflected from the closed end distort the flame surface. When the frequency of acoustic mode between the flame front and the tube end comes in resonance with intrinsic flame oscillations the burning rate increases considerably and the flame front becomes violently corrugated.
3

Direct numerical simulation and reaction path analysis of titania formation in flame synthesis

Singh, Ravi Ishwar 03 February 2014 (has links)
Flame-based synthesis is an attractive industrial process for the large scale generation of nanoparticles. In this aerosol process, a gasifi ed precursor is injected into a high-temperature turbulent flame, where oxidation followed by particle nucleation and other solid phase dynamics create nanoparticles. Precursor oxidation, which ultimately leads to nucleation, is strongly influenced by the turbulent flame dynamics. Here, direct numerical simulation (DNS) of a canonical homogeneous flow is used to understand the interaction between a methane/air flame and titanium tetrachloride oxidation to titania. Detailed chemical kinetics is used to describe the combustion and precursor oxidation processes. Results show that the initial precursor decomposition is heavily influenced by the gas phase temperature field. However, temperature insensitivity of subsequent reactions in the precursor oxidation pathway slow down conversion to the titania. Consequently, titania formation occurs at much longer time scales compared to that of hydrocarbon oxidation. Further, only a fraction of the precursor is converted to titania, and a signi cant amount of partially-oxidized precursor species are formed. Introducing the precursor in the oxidizer stream as opposed to the fuel stream has only a minimal impact on the oxidation dynamics. In order to understand modeling issues, the DNS results are compared with the laminar flamelet model. It is shown that the flamelet assumption qualitatively reproduces the oxidation structure. Further, reduced oxygen concentration in the near-flame location critically a ffects titania formation. The DNS results also show that titania forms on the lean and rich sides of the flame. A reaction path analysis (RPA) is conducted. The results illustrate the di ffering reaction pathways of the detailed chemical mechanism depending on the composition of the mixture. The RPA results corroborate with the DNS results that titania formation is maximized at two mixture fraction values, one on the lean side of the flame, and one on the rich side. / text
4

Direct Numerical Simulation of the Flow over a Golf Ball

January 2011 (has links)
abstract: The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum forcing in the vicinity of the boundary. The flow solver is parallelized using a domain decomposition strategy and message passing interface (MPI), and exhibits linear scaling on as many as 500 processors. A laminar flow case is presented to verify the formal accuracy of the method. The immersed boundary approach is validated by comparison with computations of the flow over a smooth sphere. Simulations are performed at Reynolds numbers of 2.5 × 104 and 1.1 × 105 based on the diameter of the ball and the freestream speed and using grids comprised of more than 1.14 × 109 points. Flow visualizations reveal the location of separation, as well as the delay of complete detachment. Predictions of the aerodynamic forces at both Reynolds numbers are in reasonable agreement with measurements. Energy spectra of the velocity quantify the dominant frequencies of the flow near separation and in the wake. Time-averaged statistics reveal characteristic physical patterns in the flow as well as local trends within dimples. A mechanism of drag reduction due to the dimples is confirmed, and metrics for dimple optimization are proposed. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2011
5

Physical aspects and modelling of turbulent MILD combustion

Minamoto, Yuki January 2014 (has links)
Moderate or Intense Low-oxygen Dilution (MILD) combustion is one of combustion technologies which can improve efficiency and reduce emissions simultaneously. This combustion type is characterised by the highly preheated reactant temperature and the relatively small temperature rise during combustion due to the intense dilution of the reactant mixture. These unique combustion conditions give MILD combustion very attractive features such as high combustion efficiency, reduction of pollutant emissions, attenuation of combustion instabilities and flexibility of the flow field. However, our understanding of MILD combustion is not enough to employ the MILD combustion technology further for modern combustion devices. In this thesis, Direct Numerical Simulation (DNS) has been carried out for turbulent MILD combustion under four MILD and classical premixed conditions. A two-phase strategy is employed in the DNS to include the effect of imperfect mixing between fresh and exhaust gases before intense chemical reactions start. In the simulated instantaneous MILD reaction rate fields, both thin and distributed reaction zones are observed. Thin reaction zones having flamelet like characteristics propagate until colliding with other thin reaction zones to produce distributed reaction zones. Also, the effect of such interacting reaction zones on scalar gradient has to be taken into account in flamelet approaches. Morphological features of MILD reaction zones are investigated by employing Minkowski functionals and shapefinders. Although a few local reaction zones are classified as thin shape, the majority of local reaction zones have pancake or tube-like shapes. The representative scales computed by the shapefinders also show a typical volume where intense reactions appear. Given high temperature and existence of radicals in the diluted reactants, both reaction dominated and flame-propagation dominated regions are locally observed. These two phenomena are closely entangled under a high dilution condition. The favourable conditions for these phenomena are investigated by focusing on scalar fluxes and reaction rate. A conditional Probability Density Function (PDF) is proposed to investigate flamelet/non-flamelet characteristics of MILD combustion. The PDF can be obtained by both numerically and experimentally. The PDF shows that MILD combustion still has the direct relationship between reaction rate and scalar gradient, although the tendency is statistically weak due to the distributed nature of MILD reaction zones. Finally, based on the physical aspects of MILD combustion explained in this work, a representative model reactor for MILD combustion is developed. The model reactor is also used in conjunction with the presumed PDF for a mean and filtered reaction rate closure. The results show a good agreement between the modelled reaction rate and the DNS results.
6

DNS of inhomogeneous reactants premixed combustion

Lim, Kian Min January 2015 (has links)
The search for clean and efficient combustors is motivated by the increasingly stringent emissions regulations. New gas turbine engines are designed to operate under lean conditions with inhomogeneous reactants to ensure cleanliness and stability of the combustion. This ushers in a new mode of combustion, called the inhomogeneous reactants premixed combustion. The present study investigates the effects of inhomogeneous reactants on premixed combustion, specifically on the interactions of an initially planar flame with field of inhomogeneous reactants. Unsteady and unstrained laminar methane-air flames are studied in one- and two-dimensional simulations to investigate the effects of normally and tangentially (to the flame surface) stratified reactants. A three-dimensional DNS of turbulent inhomogeneous reactants premixed combustion is performed to extend the investigation into turbulent flames. The methaneair combustion is represented by a complex chemical reaction mechanism with 18 species and 68 steps. The flame surface density (FSD) and displacement speed S_d have been used as the framework to analyse the inhomogeneous reactants premixed flame. The flames are characterised by an isosurface of reaction progress variable. The unsteady flames are compared to the steady laminar unstrained reference case. An equivalence ratio dip is observed in all simulations and it can serve as a marker for the premixed flame. The dip is attributed to the preferential diffusion of carbon- and hydrogen- containing species. Hysteresis of S_d is observed in the unsteady and unstrained laminar flames that propagate into normally stratified reactants. Stoichiometric flames propagating into lean mixture have a larger S_d than lean flames propagating into stoichiometric mixtures. The cross-dissipation term contribution to S_d is small (~~10%) but its contribution to the hysteresis of S_d is not (~~50%). Differential propagation of the flame surface is observed in the laminar flame that propagates into tangentially stratified reactants. Stretch on the flame surface is induced by the differential propagation, which in turn increases the flame surface area.
7

High Resolution Simulation of Laminar and Transitional Flows in a Mixing Vessel

Rice, Matthew Jason 01 July 2011 (has links)
The present work seeks to fully investigate, describe and characterize the distinct flow regimes existing within a mixing vessel at various rotational speeds. This investigation is computational in nature and simulates the flow within a baffled tank containing a Rushton turbine of the standard configuration. For a Re based on impeller diameter and blade rotational speed (Re â ¡ Ï ND2/μ) the following flow regimes were identified and investigated in detail: Reverse/reciprocating flows at very low Re (<10); stalled flows at low Re (â 10); laminar pumping flow for higher Re and transitional pumping flow (10 squared < Re <10 to the 4th). For the three Re numbers 1, 10 and 28, it was found that for the higher Re number (28), the flow exhibited the familiar outward pumping action associated with radial impellers under turbulent flow conditions. However, as the Re number decreases, the net radial flow during one impeller revolution was reduced and for the lowest Re number a reciprocating motion with negligible net pumping was observed. In order to elucidate the physical mechanism responsible for the observed flow pattern at low Re, the forces acting on a fluid element in the radial direction were analyzed. Based on this analysis, a simplified quasi-analytic model of the flow was developed that gives a satisfactory qualitative, as well as quantitative representation of the flow at very low Re. Investigation of the transitional flow regime (Re â 3000) includes a compilation and characterization of ensemble and turbulent quantities such as the Reynolds stress components, dissipation length η and time scales Ï , as well a detailed investigation of the near-impeller flow and trailing vortex. Calculation and compilation of all terms in the turbulent kinetic energy transport equation was performed (including generation and the illusive turbulent pressure work). Specifically, the most important transport mechanism was turbulent convection/diffusion from the impeller disk-plane/trailing vortex region. Mean flow transport of turbulent kinetic energy was primarily towards the impeller disk-plane and radially outward from the trailing vortex region. The turbulent pressure work was found to partially counteract turbulent convection. Turbulent dissipation followed by turbulent viscous work were found to be the least important mechanism responsible for turbulent transport with both terms being maximized within the vortex region and at the disk-plane down-stream from the vortices. / Ph. D.
8

Direct and Large-Eddy Simulations of Turbulent  Boundary Layers with Heat Transfer

Li, Qiang January 2011 (has links)
QC 20110926
9

Numerical Simulation of Three-Dimensional Tsunami Generation by Subaerial Landslides

Kim, Gyeongbo 1978- 14 March 2013 (has links)
Tsunamis are one of the most catastrophic natural events impacting coastal regions often generated by undersea earthquakes. Nevertheless, in enclosed basins, i.e., fjords, reservoirs and lakes, subaerial or submarine landslides can initiate devastating tsunamis with similar consequences. Although a subaerial or submarine landslide that impinges into a large water body can generate a tsunami, subaerial landslides are much more efficient tsunami generators than its counterpart. In this study we aim to integrate laboratory scale experiments of tsunami generation by subaerial landslide with numerical models. The work focuses on the numerical validation of two three-dimensional Navier-Stokes (3D-NS) models, FLOW-3D and our developed model TSUNAMI3D. The models are validated based on previous large scale laboratory experiments performed by a tsunami research team lead by Dr. Hermann Fritz, Georgia Institute of Technology. Three large scale landslide scenarios were selected from the set of laboratory experiments, namely, fjord like, headland and far field coastline. These scenarios showed that complex wave fields can be generated by subaerial landslides. The correct definition and evolution of the wave field are key to accurate modeling the ensuing tsunami and its effect in coastal regions. In this study, comparisons are performed between numerical results and laboratory experiments. Methodology and key parameters for soil rheology are defined for model validations. Results of the models are expected to be under the allowable errors indicated by the National Tsunami Hazard Mitigation Program (NTHMP), National Oceanic and Atmospheric Administration (NOAA) guidelines for validation of tsunami numerical models. The ultimate goal of this research is to obtain better tsunami calculation tools for real-world application of 3-D models for landslide tsunamis, which are necessary for the construction of inundation maps in the Gulf of Mexico and the Caribbean regions.
10

Study of multi-component fuel premixed combustion using direct numerical simulation

Nikolaou, Zacharias M. January 2014 (has links)
Fossil fuel reserves are projected to be decreasing, and emission regulations are becoming more stringent due to increasing atmospheric pollution. Alternative fuels for power generation in industrial gas turbines are thus required able to meet the above demands. Examples of such fuels are synthetic gas, blast furnace gas and coke oven gas. A common characteristic of these fuels is that they are multi-component fuels, whose composition varies greatly depending on their production process. This implies that their combustion characteristics will also vary significantly. Thus, accurate and yet flexible enough combustion sub-models are required for such fuels, which are used during the design stage, to ensure optimum performance during practical operating conditions. Most combustion sub-model development and validation is based on Direct Numerical Simulation (DNS) studies. DNS however is computationally expensive. This, has so far limited DNS to single-component fuels such as methane and hydrogen. Furthermore, the majority of DNS conducted to date used one-step chemistry in 3D, and skeletal chemistry in 2D only. The need for 3D DNS using skeletal chemistry is thus apparent. In this study, an accurate reduced chemical mechanism suitable for multi-component fuel-air combustion is developed from a skeletal mechanism. Three-dimensional DNS of a freely propagating turbulent premixed flame is then conducted using both mechanisms to shed some light into the flame structure and turbulence-scalar interaction of such multi-component fuel flames. It is found that for the multi-component fuel flame heat is released over a wider temperature range contrary to a methane flame. This, results from the presence of individual species reactions zones which do not all overlap. The performance of the reduced mechanism is also validated using the DNS data. Results suggest it to be a good substitute of the skeletal mechanism, resulting in significant time and memory savings. The flame markers commonly used to visualize heat release rate in laser diagnostics are found to be inadequate for the multi-component fuel flame, and alternative markers are proposed. Finally, some popular mean reaction rate closures are tested for the multi-component fuel flame. Significant differences are observed between the models’ performance at the highest turbulence level considered in this study. These arise from the chemical complexity of the fuel, and further parametric studies using skeletal chemistry DNS would be useful for the refinement of the models.

Page generated in 0.1439 seconds