• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 20
  • 12
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Confined Reacting Supersonic Mixing Layer - A DNS Study With Analysis Of Turbulence And Combustion Models

Chakraborty, Debasis 06 1900 (has links) (PDF)
No description available.
12

Statistical characteristics of two-dimensional and quasigeostrophic turbulence

Vallgren, Andreas January 2010 (has links)
Two codes have been developed and implemented for use on massively parallelsuper computers to simulate two-dimensional and quasigeostrophic turbulence.The codes have been found to scale well with increasing resolution and width ofthe simulations. This has allowed for the highest resolution simulations of two-dimensional and quasigeostrophic turbulence so far reported in the literature.The direct numerical simulations have focused on the statistical characteristicsof turbulent cascades of energy and enstrophy, the role of coherent vorticesand departures from universal scaling laws, theoretized more than 40 yearsago. In particular, the investigations have concerned the enstrophy and energycascade in forced and decaying two-dimensional turbulence. Furthermore, theapplicability of Charney’s hypotheses on quasigeostrophic turbulence has beentested. The results have shed light on the flow evolution at very large Reynoldsnumbers. The most important results are the robustness of the enstrophycascade in forced and decaying two-dimensional turbulence, the unexpecteddependency on an infrared Reynolds number in the spectral scaling of theenergy spectrum in the inverse energy cascade, and the validation of Charney’spredictions on the dynamics of quasigeostrophic turbulence. It has also beenshown that the scaling of the energy spectrum in the enstrophy cascade isinsensitive to intermittency in higher order statistics, but that corrections mightapply to the ”universal” Batchelor-Kraichnan constant.
13

Statistical characteristics of two-dimensional and quasigeostrophic turbulence

Vallgren, Andreas January 2010 (has links)
<p>Two codes have been developed and implemented for use on massively parallelsuper computers to simulate two-dimensional and quasigeostrophic turbulence.The codes have been found to scale well with increasing resolution and width ofthe simulations. This has allowed for the highest resolution simulations of two-dimensional and quasigeostrophic turbulence so far reported in the literature.The direct numerical simulations have focused on the statistical characteristicsof turbulent cascades of energy and enstrophy, the role of coherent vorticesand departures from universal scaling laws, theoretized more than 40 yearsago. In particular, the investigations have concerned the enstrophy and energycascade in forced and decaying two-dimensional turbulence. Furthermore, theapplicability of Charney’s hypotheses on quasigeostrophic turbulence has beentested. The results have shed light on the flow evolution at very large Reynoldsnumbers. The most important results are the robustness of the enstrophycascade in forced and decaying two-dimensional turbulence, the unexpecteddependency on an infrared Reynolds number in the spectral scaling of theenergy spectrum in the inverse energy cascade, and the validation of Charney’spredictions on the dynamics of quasigeostrophic turbulence. It has also beenshown that the scaling of the energy spectrum in the enstrophy cascade isinsensitive to intermittency in higher order statistics, but that corrections mightapply to the ”universal” Batchelor-Kraichnan constant.</p>
14

Simulation numérique directe d'un jet en écoulement transverse à bas nombre de Mach en vue de l'amélioration du refroidissement par effusion des chambres de combustion aéronautiques / Direct numerical simulation of a jet in crossflow at low Mach number in order to improve effusion cooling for combustion chambers.

Delmas, Simon 16 December 2015 (has links)
Dans cette thèse on s'intéresse aux jets en écoulement transverse dans une configuration générique de celle du refroidissement par effusion de chambres de combustion aéronautiques. L'amélioration des modèles de paroi avec transfert de masse passe par une meilleure connaissance de l'interaction entre les jets et l’écoulement principal. Nous avons donc réalisé la simulation numérique directe d'un jet issu d'un perçage incliné avec ou sans giration, pour des écoulements isothermes, turbulents et à bas nombre de Mach, dans un contexte compressible. Pour cela nous avons travaillé avec la bibliothèque AeroSol d'éléments finis continus et discontinus sur maillage hybride. En particulier nous nous sommes intéressés à la stabilité des flux numériques pour le compressible instationnaire associés à la méthode de Galerkin discontinue lorsque le nombre de Mach tend vers zéro. Nous avons pu mettre en évidence des comportements instables lors de l'utilisation de discrétisation temporelle explicite que nous avons corrigés en proposant un nouveau flux. Dans un deuxième temps, nous avons effectué les développements nécessaires à la réalisation des calculs. Nous nous sommes en particulier intéressés à la génération d'un champ de vitesse turbulent synthétique par la méthode SEM (Synthetic Eddy Method) que nous avons implantée dans AeroSol et validée. Grâce aux outils de post-traitement développés, nous avons conduit l'analyse de nos résultats. Dans le cas sans giration, les comparaisons avec les résultats expérimentaux et les résultats de simulations RANS que nous avons obtenus en parallèle sur la configuration du banc d'essai MAVERIC sont encourageants. La structure moyenne d'ensemble du jet est notamment correctement reproduite. En ce qui concerne la cas avec giration, le comportement attendu de déflexion successive du jet dans les deux plans caractéristiques (plan d'injection et plan de l'écoulement transverse) est bien reproduit et illustre tout le potentiel prévisionnel de la librairie de calcul que nous avons contribué à développer. / In this work we are interested in jet in crossflow in a generic configuration to the one used in effusion cooling for combustion chambers. Improved wall models with mass transfer requires a better knowledge of the interaction between the jets and the main flow. We therefore carried out the direct numerical simulation of a jet issuing from an inclined hole with or without gyration, for isothermal turbulent flow at low Mach number, in a compressible context. To achieved this, we worked with the continuous and discontinuous finite element library : AeroSol on hybrid grid. In particular we studied the stability of numerical flux for the unsteady compressible flow associated with discontinuous Galerkin method when the Mach number tends to zero. We were able to demonstrate unstable behavior when using explicit time discretization and we corrected them by providing a new flux. In a second time, we have performed the necessary development to achieve the calculations. We have been especially interested in the generation of a synthetic turbulent velocity field using the SEM method (Synthetic Eddy Method) that we have implemented in aerosol and validate. Thanks to the developed post-processing tools, we have conducted an analysis of our results. In the case without gyration, comparisons with experimental results and the results of RANS simulations we obtained on the Maveric test-bench configuration are encouraging. The mean flow of the jet is correctly reproduced. In the case with gyration, the expected behavior of successive deflection of the jet in both planes (injection plane and transverse plane of the flow) is reproduced and shows all the potential of the AeroSol library we helped to develop.
15

Spectral-element simulations of turbulent wall-bounded flows including transition and separation

Malm, Johan January 2011 (has links)
The spectral-element method (SEM) is used to study wall-bounded turbulent flowsin moderately complex geometries. The first part of the thesis is devoted to simulations of canonical flow cases, such as temporal K-type transitionand turbulent channel flow, to investigate general resolution requirements and computational efficiency of the numerical code nek5000. Large-eddy simulation (LES) is further performed of a plane asymmetric diffuser flow with an opening angle of 8.5 degrees, featuring turbulent flow separation. Good agreement with numerical studies of Herbst (2007) is obtained, and it is concluded that the use of a high-order method is advantageous for flows featuring pressure-induced separation. Moreover, it is shown, both a priori on simpler model problems and a posteriori using the full Navier--Stokes equations, that the numerical instability associated with SEM at high Reynolds numbers is cured either by employing over-integration (dealiasing) or a filter-based stabilisation, thus rendering simulations of moderate to high Reynolds number flows possible. The second part of the thesis is devoted to the first direct numerical simulation (DNS) of a truly three-dimensional, turbulent and separated diffuser flow at Re = 10 000 (based on bulk velocity and inflow-duct height), experimentally investigated by Cherry et al. (2008). The massively parallel capabilities of the spectral-element method are exploited by running the simulations on up to 32 768 processors. Very good agreement with experimental mean flow data is obtained and it is thus shown that well-resolved simulations of complex turbulent flows with high accuracy are possible at realistic Reynolds numberseven in complicated geometries. An explanation for the discovered asymmetry of the mean separated flow is provided and itis demonstrated that a large-scale quasi-periodic motion is present in the diffuser. In addition, a new diagnostic measure, based on the maximum vorticity stretching component in every spatial point, is designed and tested in a number of turbulent and transitional flows. Finally, Koopman mode decomposition is performed of a minimal channel flow and compared to classical proper orthogonal decomposition (POD). / QC 20111206
16

Dynamic properties of two-dimensional and quasi-geostrophic turbulence

Vallgren, Andreas January 2010 (has links)
Two codes have been developed and implemented for use on massively parallelsuper computers to simulate two-dimensional and quasi-geostrophic turbulence.The codes have been found to scale well with increasing resolution and width ofthe simulations. This has allowed for the highest resolution simulations of twodimensionaland quasi-geostrophic turbulence so far reported in the literature.The direct numerical simulations have focused on the statistical characteristicsof turbulent cascades of energy and enstrophy, the role of coherent vorticesand departures from universal scaling laws, theoretized more than 40 yearsago. In particular, the investigations have concerned the enstrophy and energycascades in forced and decaying two-dimensional turbulence. Furthermore, theapplicability of Charney’s hypotheses on quasi-geostrophic turbulence has beentested. The results have shed light on the flow evolution at very large Reynoldsnumbers. The most important results are the robustness of the enstrophycascade in forced and decaying two-dimensional turbulence, the sensitivity toan infrared Reynolds number in the spectral scaling of the energy spectrumin the inverse energy cascade range, and the validation of Charney’s predictionson the dynamics of quasi-geostrophic turbulence. It has also been shownthat the scaling of the energy spectrum in the enstrophy cascade is insensitiveto intermittency in higher order statistics, but that corrections apply to the”universal” Batchelor-Kraichnan constant, as a consequence of large-scale dissipationanomalies following a classical remark by Landau (Landau &amp; Lifshitz1987). Another finding is that the inverse energy cascade is maintained bynonlocal triad interactions, which is in contradiction with the classical localityassumption. / QC 20101029
17

Study of the Thermal Field of Turbulent Channel Flows Via Direct Numerical Simulations

Alcántara Ávila, Francisco 24 January 2022 (has links)
[ES] El principal objetivo de esta tesis es el estudio de flujos térmicos turbulentos en canales para obtener un mayor conocimiento sobre el fenómeno de la turbulencia. Para ello, se ha realizado un estudio desde el punto de vista de la mecánica de fluidos computacional, en concreto, se ha utilizado la técnica de las simulaciones numéricas directas (DNS de sus siglas en inglés). La idea principal de las simulaciones realizadas ha sido ampliar el estado del arte actual, en lo referente a los dos parámetros principales que caracterizan el flujo: el número de Reynolds de fricción, Reτ, y el número de Prandtl, Pr. Dos configuraciones del flujo han sido utilizadas: flujo de Poiseuille y flujo de Couette, siendo la primera el principal foco del estudio. En cuanto al campo de temperaturas, se ha utilizado una condición de contorno mixta y se ha considerado como un escalar pasivo. Así pues, los números de Reynolds de fricción simulados para un flujo de Poisuille han sido Reτ = 500, 1000 y 2000, para números de Prandtl que varían desde 0.007 (metales fundidos) hasta 10 (agua), pasando por 0.71 que es el valor más utilizado por ser éste el número de Prandtl del aire. Además, se ha realizado una simulación con Reτ = 5000 y Pr = 0.71, la cual es la DNS térmica con el número de Reynolds de fricción más alto hasta la fecha. Destacar que para los números de Prandtl más altos, se ha observado que el valor máximo de la varianza de la temperatura es constante. Esto tiene un importante beneficio en el escalado cerca de la pared de los términos de disipación y difusión viscosa del balance de energía de θ′'+. Por último en lo referente a simulaciones de flujos de Poiseuille, se ha estudiado el caso isotérmico con Reτ = 10000, la cual es la mayor DNS de un canal turbulento, obteniendo por primera vez en una DNS una capa logarítmica perfectamente desarrollada en el campo de velocidades. Un estudio teórico, basado en las simetrías de Lie, ha sido llevado a cabo en paralelo a las simulaciones. El principal objetivo ha sido la generación de leyes de escaldo, basadas en primeros principios, del campo de velocidades, temperatura y momentos de altos órdenes de ambos campos. El resultado es que para números de Reynolds y Péclet suficientemente altos, dichos campos escalan como leyes de defecto de funciones de potencia de la distancia de la pared en el centro del canal. De la misma forma, se ha obtenido un escalado de la velocidad en la capa logarítmica para el caso de Reτ = 10000, obteniendo la clásica función logarítmica para la velocidad media y una función potencial para los momentos de órdenes superiores. Las leyes de escalado han sido validadas con los datos obtenidos en las DNS, obteniendo una precisión excelente. Por último, se han realizado una simulaciones de flujo de Couette con el número de Prandtl de aire, Pr = 0.71, y números de Reynolds de fricción de valores Reτ = 180, 250 y 500. El principal objetivo era el estudio de las estructuras coherentes que se forman en estos flujos de Couette. En concreto, se ha visto que las intensidades turbulentas dependen del número y tamaño de las estructuras. Es por ello que se necesita como mínimo una anchura del dominio computacional de 6πh para que las estadísticas sean independientes. Una última serie de simulaciones ha sido llevada a cabo considerando flujo estratificado. El objetivo era estudiar si las estructuras de Couette persisten en este tipo de flujos. Para un Reτ = 500 y el número de Prandtl de aire, Pr = 0.71, se han tomado valores del número de Richardson de fricción, Riτ = 0.5, 1.65 y 2.90. Para los dos casos con el número de Richardson de fricción más alto, las estructuras del flujo de Couette se debilitan hasta el punto de ser casi inexistentes. Las principales estadísticas de las simulaciones se encuentran disponibles en la base de datos del grupo de investigación, la cual está abierta a la comunidad científica y se puede acceder desde el siguiente enlace http://personales.upv.es/serhocal/ / [CA] El principal objectiu d'aquesta tesis és l'estudi de fluids tèrmics turbulents en canals per obtenir un major coneixement sobre el fenomen de la turbulència. Per a això, s'ha realitzat un estudi des de el punt de vista de la mecànica de fluids computacional, més concretament, s'ha utilitzat la tècnica de les simulacions numèriques directes (DNS de les seues sigles en anglès). La idea principal de les simulacions realitzades ha sigut ampliar l'estat de l'art actual, en lo referent al dos paràmetres principals que caracteritzen un flux: el número de Reynolds de fricció, Reτ , i el número de Prandtl, Pr. Dos configuracions del fluid han sigut utilitzades: flux de Poiseuille i flux de Couette, sent la primera el principal focus de l'estudi. En quant al camp de temperatures, s'ha utilitzat una condició de contorn mixta i s'ha considerat com a un escalar passiu. Així doncs, els primers números de Reynolds de fricció simulats per a un flux de Poisuille han sigut Reτ = 500, 1000 i 2000, per a números de Prandtl que varien des de 0.007 (metalls fosos) fins 10 (aigua), passant per 0.71 que és el valor més utilitzat per se aquest el número de Prandtl de l'aire. A més, s'ha realitzat una simulació con Reτ = 5000 i Pr = 0.71, la qual és la DNS tèrmica con el número de Reynolds de fricció més alt fins avui. Destacar que per a números de Prandtl més alts, s'ha observat que el valor màxim de la variància de la temperatura és constant. Això té un important benefici en l'escalat cerca de la paret dels terminis de dissipació i difusió viscosa del balanç d'energia de θ′'+. Per últim, en lo referent a simulacions de fluxos de Poiseuille, s'ha estudiat el cas isotèrmic amb Reτ = 10000, el qual és el major DNS de un canal turbulent, obtenint per primera vegada en una DNS una capa logarítmica perfectament desenvolupada en el camp de les velocitats. Un estudi teòric , basat en les simetries de Lie, ha sigut portat a terme en paral·lel a les simulacions. El principal objectiu ha sigut la generació de lleis d'escalat, basades en primers principis, del camp de velocitats, temperatura i els moments d'altos ordres de ambdós camps. El resultat és que per a números de Reynolds i Péclet suficientment alts, aquests camps escalen com lleis de defecte de funcions de potència de la distància de la paret en el centre del canal. De la mateixa manera, s'ha obtingut un escalat de la velocitat en la capa logarítmica per al caso de Reτ = 10000, obtenint la clàssica funció logarítmica per a la velocitat mitjana i una funció potencial per als moments d'ordres superiors. Les lleis d'escalat han sigut validades amb les dades obtingudes en les DNS, obtenint una precisió excel·lent. Per últim, s'ha realitzat una simulació de fluxos de Couette amb el número de Prandtl d l'aire, Pr = 0.71, i números de Reynolds de fricció de valors Reτ = 180, 250 i 500. El principal objectiu era l'estudi de les estructures coherents que es formen en aquests fluxos de Couette. Concretament, s'ha vist que les intensitats turbulentes depenen del número i mesura de les estructures. Es per això que es necessita com a mínim una amplada del domini computacional de 6π h per a que les estadístiques siguin independents. Una última sèrie de simulacions ha sigut feta considerant el flux estratificat. L'objectiu era estudiar si les estructures de Couette persisteixen en aquest tipus de fluxos. Per a un Reτ = 500 i el número de Prandtl d'aire, Pr = 0.71, s'han agafat valors del número de Richardson de fricció, Riτ = 0.5, 1.65 i 2.90. Per als dos casos amb el número de Richardson de fricció més alt, les estructures de flux de Couette es debiliten fins al punt de ser casi inexistents. Les principals estadístiques de les simulacions es troben disponibles en les bases de dades del grup d'investigació, el qual està obert a la comunitat científica i es pot accedir des de el següent enllaç http://personales.upv.es/serhocal/ / [EN] The main objective of this thesis is the study of thermal turbulent channel flows to obtain a greater knowledge about the phenomenon of turbulence. For this, a study has been carried out from the point of view of computational fluid mechanics, specifically, the technique of direct numerical simulations (DNS) has been used. The main idea of the simulations conducted has been to expand the current state of the art, in relation to the two main parameters that characterize the flow: the friction Reynolds number, Reτ, and the Prandtl number, Pr. Two flow configurations have been used: Poiseuille flow and Couette flow, the former being the main focus of the study. Regarding the temperature field, a mixed boundary condition has been used and it has been considered as a passive scalar. Thus, the simulated friction Reynolds numbers for a Poisuille flow have been Reτ = 500, 1000 and 2000, for Prandtl numbers that vary from 0.007 (molten metals) to 10 (water), passing through 0.71 which is the value more used because this is the Prandtl number of the air. In addition, a simulation has been carried out with Reτ = 5000 and Pr = 0.71, which is the thermal DNS with the highest friction Reynolds number to date. It should be noted that for the highest Prandtl numbers, it has been observed that the maximum value of the variance of the temperature is constant. This has an important benefit in scaling near the wall of the dissipation and viscous diffusion budget terms of the τ'+. Finally, with regard to Poiseuille flow simulations, the isothermal case has been studied with Reτ = 10000, which is the highest DNS of a turbulent channel flow, obtaining for the first time in a DNS a perfectly developed logarithmic layer in the velocity field. A theoretical study, based on Lie symmetries, has been carried out in parallel to the simulations. The main objective has been the generation of scald laws, based on first principles, of the field of velocity, temperature and high order moments of both fields. The result is that for sufficiently high Reynolds and Péclet numbers, these fields scale as defect laws of power functions of the distance to the wall in the center of the channel. In the same way, a scaling of the speed in the logarithmic layer has been obtained for the case of Reτ = 10000, obtaining the classic logarithmic function for the average velocity and a potential function for the moments of higher orders. The scaling laws have been validated with the data obtained in the DNS, obtaining excellent precision. Finally, a set of Couette flow simulations have been carried out with the Prandtl number of air, Pr = 0.71, and Reynolds friction numbers of Reτ = 180, 250 and 500. The main objective was the study of coherent structures that are formed in these Couette flows. Specifically, it has been seen that turbulent intensities depend on the number and size of the structures. For this reason, a minimum width of the computational domain of 6πh is required for the statistics to be independent. A last series of simulations has been carried out considering stratified flow. The objective was to study whether Couette structures persist in this type of flow. Thus, for a Reτ = 500 and the Prandtl number of air, Pr = 0.71, the values of the friction Richardson number have been varied according to, Riτ = 0.5, 1.65 and 2.90, for each simulation. For the two cases with the highest friction Richardson number, the Couette flow structures weaken to the point of being almost non-existent. The main statistics of the simulations are available in the research group's database, which is open to the scientific community and can be accessed from the following link http://personales.upv.es/serhocal/ / Esta tesis ha recibido la ayuda de MINECO/FEDER proyecto ENE2015-71333-R. / Alcántara Ávila, F. (2021). Study of the thermal field of turbulent channel flows via Direct Numerical Simulations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180122 / TESIS
18

Thermal-hydraulic numerical simulation of fuel sub-assembly for Sodium-cooled Fast Reactor / Simulation numérique de la thermohydraulique dans un assemblage combustible du Réacteur à Neutrons Rapides refroidi au sodium

Saxena, Aakanksha 02 October 2014 (has links)
La thèse porte sur la simulation de la thermohydraulique et des transferts thermiques dans un faisceau d'aiguilles d'assemblage combustible de réacteur à neutrons rapides à caloporteur sodium.Des premiers calculs ont été réalisés par une approche moyennée de type RANS à l'aide du code industriel STAR-CCM+. De cette modélisation, il ressort une meilleure compréhension des transferts de chaleur opérés entre les aiguilles et le sodium. Les principales grandeurs macroscopiques de l'écoulement sont en accord avec les corrélations. Cependant, afin d'obtenir une description détaillée des fluctuations de température au niveau des fils espaceur, une approche plus détaillée de type LES et DNS est apparue indispensable. Pour la partie LES, le code TRIO_U a été utilisé. Concernant la partie DNS, un code de recherche a été utilisé. Ces approches requièrent des temps de calculs considérables qui ont nécessité des géométries représentatives mais simplifiées.L'approche DNS permet d'étudier l'écoulement à bas nombre de Prandtl, qui induit un comportement très différent du champ thermique relativement au champ hydraulique. Le calcul LES de l'assemblage montre que la présence du fil espaceur génère l'apparition de points chauds locaux (~20°C) en aval de celui-ci par rapport à l'écoulement sodium, au niveau de son contact avec l'aiguille. Les fluctuations de température au niveau des fils espaceur sont faibles (~1°C-2°C). En régime nominal, l'analyse spectrale montre l'absence de grande amplitude d'oscillations de température à basse fréquence (2-10 Hz); les conséquences sur la tenue mécanique des structures devront être analysées. / The thesis focuses on the numerical simulation of sodium flow in wire wrapped sub-assembly of Sodium-cooled Fast Reactor (SFR).First calculations were carried out by a time averaging approach called RANS (Reynolds- Averaged Navier-Stokes equations) using industrial code STAR-CCM+. This study gives a clear understanding of heat transfer between the fuel pin and sodium. The main variables of the macroscopic flow are in agreement with correlations used hitherto. However, to obtain a detailed description of temperature fluctuations around the spacer wire, more accurate approaches like LES (Large Eddy Simulation) and DNS (Direct Numerical Simulation) are clearly needed. For LES approach, the code TRIO_U was used and for the DNS approach, a research code was used. These approaches require a considerable long calculation time which leads to the need of representative but simplified geometry.The DNS approach enables us to study the thermal hydraulics of sodium that has very low Prandtl number inducing a very different behavior of thermal field in comparison to the hydraulic field. The LES approach is used to study the local region of sub-assembly. This study shows that spacer wire generates the local hot spots (~20°C) on the wake side of spacer wire with respect to the sodium flow at the region of contact with the fuel pin. Temperature fluctuations around the spacer wire are low (~1-2°C). Under nominal operation, the spectral analysis shows the absence of any dominant peak for temperature oscillations at low frequency (2-10Hz). The obtained spectra of temperature oscillations can be used as an input for further mechanical studies to determine its impact on the solid structures.
19

Computational and Experimental Study of the Primary Atomisation Process under Different Injection Conditions

González Montero, Lucas Antonio 12 December 2022 (has links)
[ES] El proceso de atomización primaria es el mecanismo por el cual una vena líquida se disgrega en un ambiente gaseoso. Este proceso está presente en muchas aplicaciones de ingeniería realizando diferentes tareas. En ocasiones es un paso previo antes de ser quemado, como en la industria energética o de propulsión, donde el objetivo es extraer la energía específica del líquido. En otros sectores, como el revestimiento o la extinción de incendios, el objetivo es maximizar el área cubierta por el chorro. Sin embargo, aunque la atomización es una parte fundamental de varios procesos industriales, está lejos de comprenderse por completo. El proceso de atomización es una mezcla de fenómenos de interacción gas-líquido dentro de un campo turbulento que tiene lugar en el campo cercano, que es la región más densa del chorro. Cuando se trata de arrojar luz sobre el proceso de atomización primaria, el problema principal es la falta de teorías físicas definitivas capaces de vincular los complejos eventos de ruptura con la turbulencia. El principal obstáculo que impide investigar el proceso de atomización primaria es la incapacidad de las técnicas ópticas clásicas para proporcionar información de la región densa del chorro. Solo en los últimos años, las nuevas técnicas basadas en rayos X podrían proporcionar nueva información sobre las características de la atomización cerca de la salida de la tobera. Esto también afecta a los modelos computacionales de atomización primaria que, al no disponer de información experimental sobre la región densa, requieren una calibración precisa de sus constantes para proporcionar resultados fiables en el campo lejano. Esta tesis se centra en mejorar el conocimiento del proceso de atomización primaria, especialmente en cómo las condiciones de inyección afectan el desarrollo del chorro en el campo cercano desde dos puntos de vista diferentes. Por un lado, con un enfoque computacional usando Direct Numerical Simulations y, por otro lado, experimentalmente usando Near-Field Microscopy. El estudio computacional se centra en variar los números de Reynolds y Weber de inyección. Los resultados muestran que aumentar el número de Reynolds mejora la desintegración del líquido, mostrando un aumento de las gotas generadas y una nube de gotas más fina. Sin embargo, la falta de un perfil turbulento de flujo de entrada completamente desarrollado conduce a comportamientos inesperados en la longitud de ruptura de la vena líquida que también aumenta con el número de Reynolds. El número de gotas también aumenta cuando aumenta el número de Weber, pero los tamaños característicos de las gotas siguen siendo los mismos. La longitud de ruptura no varía, lo que sugiere que las variaciones de la tensión superficial afectan la ruptura de las gotas y los ligamentos, pero no la desintegración del núcleo líquido en sí. Con los resultados obtenidos de ambos estudios, se propone un modelo fenomenológico que predice la distribución del tamaño de gota en función de las condiciones de inyección. Además, también se ha estudiado el efecto de usar toberas elípticas. Se ha obtenido que el número de gotas detectadas aumenta en comparación con el chorro redondo manteniendo ángulos de apertura del chorro similares. Sin embargo, cuando se utilizan toberas extremadamente excéntricas, la disminución de la turbulencia del flujo de entrada contrarresta los beneficios de este tipo de inyectores. En cuanto al análisis experimental, usar Near-Field Microscopy permite magnificar la región densa y analizar las características macroscópicas del chorro. Por lo tanto, se varían las presiones de inyección y descarga, centrándose en el ángulo de apertura del chorro. Se observa el aumento esperado en el ángulo al aumentar tanto la presión de inyección como la de descarga. Sin embargo, adicionalmente, se realiza un análisis de las perturbaciones del contorno del chorro, concluyendo que, al aumentar la presión de inyección, y por lo tanto la turbulencia del flujo de / [CA] El procés d'atomització primària és el mecanisme pel qual una vena líquida es disgrega en un ambient gasós. Aquest procés és present en moltes aplicacions d'enginyeria fent diferents tasques. De vegades és un pas previ abans de ser cremat, com ara en la indústria energètica o de propulsió, on l'objectiu és extraure l'energia específica del líquid. En altres sectors, com ara el revestiment o l'extinció d'incendis, l'objectiu és maximitzar l'àrea coberta pel doll. No obstant això, tot i que l'atomització és una part fonamental de diversos processos industrials, està lluny de comprendre's per complet. El procés d'atomització és una barreja de fenòmens d'interacció gas-líquid dins d'un camp turbulent que té lloc en el camp pròxim, que és la regió més densa del doll. Quan es tracta de donar llum sobre el procés d'atomització primària, el problema principal és la falta de teories físiques definitives capaces de vincular els complexos esdeveniments de trencament amb la turbulència. El principal obstacle que impedeix investigar el procés d'atomització primària és la incapacitat de les tècniques òptiques clàssiques per a proporcionar informació de la regió densa del doll. Només en els últims anys, les noves tècniques basades en raigs X podrien proporcionar nova informació sobre les característiques de l'atomització prop de l'eixida de la tovera. Això també afecta els models computacionals d'atomització primària que, en no disposar d'informació experimental sobre la regió densa, requereixen un calibratge precís de les seues constants per a proporcionar resultats fiables en el camp llunyà. Aquesta tesi se centra a millorar el coneixement del procés d'atomització primària, especialment en com les condicions d'injecció afecten el desenvolupament del doll en el camp pròxim des de dos punts de vista diferents. D'una banda, amb un enfocament computacional usant Direct Numerical Simulations i, d'altra banda, experimentalment usant Near-Field Microscopy. L'estudi computacional se centra a variar els nombres de Reynolds i Weber d'injecció. Els resultats mostren que augmentar el nombre de Reynolds millora la desintegració del líquid, tot mostrant un augment de les gotes generades i un núvol de gotes més fi. No obstant això, la falta d'un perfil turbulent de flux d'entrada completament desenvolupat condueix a comportaments inesperats en la longitud de ruptura de la vena líquida que també augmenta amb el nombre de Reynolds. El nombre de gotes també augmenta quan creix el nombre de Weber, però les grandàries característiques de les gotes continuen sent les mateixes. La longitud de ruptura no varia, la qual cosa suggereix que les variacions de la tensió superficial afecten la ruptura de les gotes i els lligaments, però no la desintegració del nucli líquid en ell mateix. Amb els resultats obtinguts de tots dos estudis, es proposa un model fenomenològic que prediu la distribució de la grandària de gota en funció de les condicions d'injecció. A més, també s'ha estudiat l'efecte d'usar toveres el·líptiques. S'ha obtingut que el nombre de gotes detectades augmenta en comparació amb el doll redó tot mantenint angles d'obertura del doll similars. No obstant això, quan s'utilitzen toveres extremadament excèntriques, la disminució de la turbulència del flux d'entrada contraresta els beneficis d'aquesta mena d'injectors. Quant a l'anàlisi experimental, usar Near-Field Microscopy permet magnificar la regió densa i analitzar les característiques macroscòpiques del doll. Per tant, es varien les pressions d'injecció i descàrrega, tot centrant-se en l'angle d'obertura del doll. S'observa l'augment esperat en l'angle en augmentar tant la pressió d'injecció com la de descàrrega. No obstant això, addicionalment, es realitza una anàlisi de les pertorbacions del contorn del doll i es conclou que en augmentar la pressió d'injecció, i per tant la turbulència del flux d'entrada, augmenten les pertorbacions en el contorn del ruixat, especialment a pressions de descàrrega mé / [EN] The primary atomisation process is the mechanism by which a liquid vein breaks into droplets in a gaseous ambient. This process is present in many engineering applications accomplishing different tasks. Sometimes it is a previous step before being burned, as in the energy or propulsion industry, where the objective is to extract the specific energy of the liquid. In other sectors, such as the coating or fire extinction, the objective is to maximise the area covered by the droplet cloud. However, although atomisation is a fundamental part of several industrial processes, it is far from fully understood. The atomisation process is a mixture of gas-liquid interaction phenomena within a turbulent field that takes place in the near-field, which is the denser region of the spray. When trying to shed light on the primary atomisation process, the main issue is the lack of definitive physical theories able to link the complex breakup events and the turbulence. The principal impediment that prevents the investigation from breaking through the atomisation process is the inability of the classic optical techniques to provide information from the dense region of the spray. Only in the last years, newer techniques based on X-Ray could provide new information on spray characteristics near the nozzle outlet. This also affects the computational primary atomisation models that, as there is no available experimental information on the dense region, require an accurate calibration of their constants to provide reliable results on the far-field. This thesis focuses on improving the knowledge of the primary atomisation process, especially on how the injection conditions affect the spray development in the near field from two different standpoints. On the one hand, with a computational approach using Direct Numerical Simulations and on the other hand, experimentally using Near-Field Microscopy. The computational study is focused on varying the inflow Reynolds and Weber numbers. Results show that increasing the Reynolds number improves the liquid disintegration, exhibiting an increase of generated droplets and a finer droplet cloud. However, the lack of a fully developed inflow turbulent profile leads to characteristic behaviours on the breakup length of the spray that also increases with the Reynolds number. The number of droplets increases when the Weber number increases, but the characteristic droplet sizes remain the same. The breakup length does not vary, suggesting that the surface tension variations affect the droplet and ligament breakup but not the core disintegration itself. With the results obtained from both studies, a phenomenological model is proposed to predict the droplet size distribution depending on the injection conditions. Additionally, using elliptical nozzles, the number of detected droplets increases compared with the round spray and maintain similar spray apertures. However, when using extremely eccentric nozzles, the inflow turbulence decrease counteracts the elliptical sprays' benefits. Regarding the experimental analysis, the Near-Field Microscopy magnifies the dense region and analyses the macroscopic features on the spray. So the injection and discharge pressure are varied, and the spotlight is put on the spray angle. The expected increase in the spray angle when increasing both the injection and discharge pressure is observed. Nevertheless, additionally, an analysis of the spray contour perturbations is performed, concluding that increasing the injection pressure, and thus the inflow turbulence, increases the perturbations on the spray contour, especially at lower discharge pressures. / González Montero, LA. (2022). Computational and Experimental Study of the Primary Atomisation Process under Different Injection Conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/190635
20

A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes for simulating cross-flow turbines

Ferrer, Esteban January 2012 (has links)
This thesis details the development, verification and validation of an unsteady unstructured high order (≥ 3) h/p Discontinuous Galerkin - Fourier solver for the incompressible Navier-Stokes equations on static and rotating meshes in two and three dimensions. This general purpose solver is used to provide insight into cross-flow (wind or tidal) turbine physical phenomena. Simulation of this type of turbine for renewable energy generation needs to account for the rotational motion of the blades with respect to the fixed environment. This rotational motion implies azimuthal changes in blade aero/hydro-dynamics that result in complex flow phenomena such as stalled flows, vortex shedding and blade-vortex interactions. Simulation of these flow features necessitates the use of a high order code exhibiting low numerical errors. This thesis presents the development of such a high order solver, which has been conceived and implemented from scratch by the author during his doctoral work. To account for the relative mesh motion, the incompressible Navier-Stokes equations are written in arbitrary Lagrangian-Eulerian form and a non-conformal Discontinuous Galerkin (DG) formulation (i.e. Symmetric Interior Penalty Galerkin) is used for spatial discretisation. The DG method, together with a novel sliding mesh technique, allows direct linking of rotating and static meshes through the numerical fluxes. This technique shows spectral accuracy and no degradation of temporal convergence rates if rotational motion is applied to a region of the mesh. In addition, analytical mappings are introduced to account for curved external boundaries representing circular shapes and NACA foils. To simulate 3D flows, the 2D DG solver is parallelised and extended using Fourier series. This extension allows for laminar and turbulent regimes to be simulated through Direct Numerical Simulation and Large Eddy Simulation (LES) type approaches. Two LES methodologies are proposed. Various 2D and 3D cases are presented for laminar and turbulent regimes. Among others, solutions for: Stokes flows, the Taylor vortex problem, flows around square and circular cylinders, flows around static and rotating NACA foils and flows through rotating cross-flow turbines, are presented.

Page generated in 0.1247 seconds