1 |
Dynamique de la turbulence partiellement 2D / partiellement 3D : une étude expérimentale et théorique dans le cadre MHD à bas-Rm / The dynamics of partly 2D / partly 3D turbulence : an experimental and theoretical investigation in the low-Rm MHD frameworkBaker, Nathaniel T. 09 March 2017 (has links)
L'objectif de cette thèse est de clarifier le rôle de la composante rotationnelle de la force de Lorentz dans sa capacité à imposer la topologie, et la dynamique des écoulements turbulents MHD à bas Rm, confinés par des parois rigides et électriquement isolantes. Le travail présenté ici se scinde en deux parties : D'une part une étude théorique effectuée dans un cadre faiblement inertiel, d'autre part une étude expérimentale d’écoulements turbulents pleinement développés. L’étude théorique porte sur un vortex isolé, stationnaire et axisymétrique, confiné entre deux parois rigides et électriquement isolantes, perpendiculaires à un champ magnétique uniforme. Grâce à un développement asymptotique des équations de Navier-Stokes, valable quel que soit le nombre de Hartmann, nous montrons que la dimensionnalité topologique de l’écoulement de base ne dépend que d'un seul paramètre. Ce paramètre en question compare en fait la distance sur laquelle la partie rotationnelle de la force de Lorentz est capable d'agir dans la direction du champ magnétique, avant d’être contrée par les effets visqueux. Cette étude met en lumière deux mécanismes inertiels capables d'engendrer une composante de la vitesse dans la direction du champ magnétique au premier ordre, en introduisant des recirculations dans le plan méridional : du pompage d'Ekman direct ou inverse. Un dispositif expérimental à également été construit durant ce projet, afin d’étudier la dynamique d’écoulements turbulents de métaux liquides soumis à des champs magnétiques intenses. La turbulence stationnaire engendrée par ce dispositif était forcée électriquement en imposant un courant continu à travers une matrice carrée et periodique d’électrodes d'injection. Grâce à ce dispositif, nous avons montré que les statistiques des fluctuations turbulentes étaient raisonnablement homogènes et axisymétriques, malgré un forçage inhomogène et anisotrope. Nous confirmons également, en comparant les densités d’énergie cinétique turbulentes mesurées le long des parois perpendiculaires au champ magnétique, que les processus physiques en jeu dans le domaine inertiel 3D de la turbulence MHD confinée à bas Rm sont bien la composante rotationnelle de la force de Lorentz d'une part, et les transferts inertiels d'autre part. Grâce à une étude statistique dans l'espace des échelles, nous montrons que la cinématique de la turbulence forcée dans notre expérience suit en fait une loi universelle qui ne dépend que de deux longueurs caractéristiques. Premièrement, l’échelle d'injection, dans la direction perpendiculaire au champ magnétique. Deuxièmement, le rayon d'action de la force de Lorentz avant d’être contrée par les effets inertiels, dans la direction parallèle au champ. Nous prouvons que le rapport entre cette dernière longueur caractéristique et la hauteur de l'enceinte expérimentale permet de différencier les structures turbulentes cinématiquement quasi-2D de celles qui sont cinématiquement 3D. En calculant directement le flux d’énergie cinétique turbulente perpendiculaire à travers les échelles horizontales, nous montrons que ce dernier est toujours dirigé vers les grandes échelles. Ce quel que soit la dimensionnalité des échelles en question. Autrement dit, une cascade inverse d’énergie perpendiculaire peut exister sans pour autant que les structures turbulentes associées soient quasi-2D. / This thesis aims at clarifying the role of the solenoidal component of the Lorentz force in fixing the topological dimensionality, and the ensuing dynamics of low-Rm MHD turbulent flows confined between electrically insulating and no-slip Hartmann walls. The work presented here breaks down into two main parts: An analytical investigation carried out in the weakly inertial limit on the one hand, and an experimental study of fully developed turbulence on the other hand. The analytical investigation was performed on a single steady and axisymmetric electrically driven vortex confined between no-slip and electrically insulating walls perpendicular to a uniform magnetic field. Thanks to an asymptotic expansion valid for any Hartmann number, we showed that the topological dimensionality of the leading order is fully imposed by a single parameter, which compares the distance over which the Lorentz force is able to act in the direction of the magnetic field, before it is balanced out by viscous friction. This study highlights two inertial mechanisms capable of introducing a third velocity component in the direction of the field, by means of recirculations in the meridional plane: direct and/or inverse Ekman pumping. An experimental platform was designed and built from the ground up during this project, to investigate the dynamics of liquid metal turbulence subject to extreme magnetic fields. The turbulence sustained in our experiment was forced electrically by imposing a DC current through a square periodic array of electrodes. Thanks to this setup, we showed that the statistics of the turbulent fluctuations were homogeneous and axisymmetric to a satisfactory level, despite the forcing mechanism being inhomogeneous and anisotropic. By comparing the energy densities measured along the walls perpendicular to the magnetic field, we confirm that the physical processes at stake in the 3D inertial range of wall-bounded MHD turbulence at low-Rm are the solenoidal component of the Lorentz force on the one hand, and inertia on the other hand. Thanks to a statistical analysis in scale space, we show that their exists a universal law imposing the kinematics of turbulent structures in our experiment, which turns out to be fully described by only two lenghtscales. First, the forcing scale in the direction perpendicular to the magnetic field. Second, the range of action of the Lorentz force before it is balanced out by inertial transfers, in the direction parallel to the field. We prove that the ratio of this latter scale over the height of the channel in fact segregates kinematically quasi-2D from kinematically 3D turbulent structures. By computing the actual flux of perpendicular turbulent kinetic energy along perpendicular scales, we show that it always flows towards larger turbulent scales regardless of their topology. In other words, we show that the existence of an inverse cascade of perpendicular kinetic energy does not necessarily require perpendicular turbulent scales to be topologically quasi-2D in the inertial range.
|
2 |
Data Analysis of an Unsteady Cavitating Flow on a Venturi-type ProfileNemati Kourabbasloo, Navid 01 December 2021 (has links)
The instability modes and non-linear behavior of a cavitating flow have been studied based on the experimental data obtained from planar Particle Image Velocimetry (PIV). Three data-driven techniques, Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD), and Clustered-based Reduced Order Modeling (CROM), are applied to the snapshots of the fluctuating component of velocity to investigate instability modes of the cavitating flow. DMD and POD analysis yield multiple modes are corresponding to slow-varying drift flow, cloud-shedding, and Kelvin-Helmholtz (KH) instability for a fixed inlet flow condition. The high coherence measure obtained from the instabilities suggests a transfer of energy from the largest scales, fluctuating mean flow, to the smaller scales such as cloud cavitation and Kelvin-Helmholtz (KH) instability. It is demonstrated that the POD decorrelation of length scales yields inherently quasi-periodic time dynamics, e.g., incommensurate frequencies. Moreover, the eigenvalue obtained from DMD revealed multiple harmonic with different decay rates associated with the cloud cavitation. The above-mentioned intermittent transition between distinct cloud shedding regimes is investigated via Clustered-based Reduced Order Modeling (CROM). Four aperiodic shedding regimes are identified. 68% of the time, triplets of vortices are formed, while 28% of the time, a pair of vortices are formed in the near wake of the throat. Dominant mechanisms governing the momentum transport and the turbulence kinetic energy production, destruction, and redistribution in distinct regions of the flow field have been identified using Gaussian Mixture Models (GMMs). The preceding data-driven techniques and in-depth analysis of the results facilitated modeling of the cavitation inception and break-up. Accordingly, a phase transition field model is developed using the ultra-fast Time-Resolved Particle Image Velocimetry (TR-PIV) and vapor void fraction spatial and temporal data. The data acquisition is implemented in a Venturi-type test section. The approximate Reynolds number based upon the throat height is 10,000, and the approximate cavitation number is 1.95. The non-equilibrium cavitation model assumes that the phase production and destruction are correlated to the static pressure field, pressure spatial derivatives, void fraction, and divergence of the velocity field. Finally, the dependence of the model on the empirical constants has been investigated. / Doctor of Philosophy / A cavitation bubble occurs where the pressure field is below the saturation pressure of the liquid. Accumulation of the cavitation bubble forms a cavitating flow. This phenomenon is observed in pumps, propulsion systems, internal combustion engines, and rocket engines. Identifying the mechanisms leading to cavitation-induced damages is imperative in the design of the devices. In this regard, investigation of the cavitation bubble inception, deformation, collapse, and intermittent regime change is mandatory in learning the primary mechanisms of the stresses imposed on the device. Experiments and high-fidelity numerical and analytical methods can be employed to shed light on flow physics. The current study adopted joint experimental methods, data analysis techniques, and computational approaches to scrutinize the unsteady cavitating flow underlying physics as it occurs past the throat of a Venturi-type profile. Different mechanisms of instabilities are identified by applying the data-driven techniques to the raw images of the cavitating flow. The path of the transitions between physically different instabilities mechanisms is examined. The local dominant balance between stress terms in the conservation of momentum equation is identified, and the stress terms roles in cavitating flow instabilities and advective acceleration are determined. A new cavitation model is developed and validated against the experimental results. The new model improves the prediction of the void fraction in different regions of the flow field, making it feasible to simulate different regimes of cavitating flow. Finally, the dominant mechanism governing the liquid-vapor transition and the transport of the void fraction is described.
|
3 |
Data-driven theoretical modelling of the turbulent energy cascade / Datengetriebene theoretische Modellierung der turbulenten EnergiekaskadeCleve, Jochen 14 November 2004 (has links) (PDF)
Durch eine Modellierung der Energiekaskade gewinnt man wertvolle Einsichten in die Dynamik turbulenter Strömungen. In dieser Arbeit werden multiplikative Kaskadenprozesse untersucht und mit verschiedenen experimentellen Zeitreihen der Energiedissipation verglichen. Zur Berechnung der Energiedissipation ist es unvermeidlich auf eine Hilfskonstruktion zurückzugreifen, die die nicht gemessenen Komponenten des Geschwindigkeitsfeldes ersetzt. Der Schwerpunkt des Vergleichs zwischen Modell und Experiment liegt auf Zweipunktkorrelationen, weil andere Observablen, wie z. B. integrale Momente, durch diese Hilfskonstruktion der Dissipation verfälscht werden. Es werden explizite Ausdrücke für die Zweipunktkorrelationen abgeleitet, die auch Korrekturen, die von einem endlichen Skalierungsbereich stammen,berücksichtigen. Mit diesen Ausdrücken ist es möglich, auch Datensätze mit niedrigen oder moderaten Reynoldszahlen zu fitten und genaue Werte für die Skalierungsexponenten zu bestimmen. Mit einer umfassenden Datenanalyse wird versucht, die freien Parameter des Kaskadengenerators zu bestimmen. Die verfügbare Statistik der Daten ist zu gering, um genauere Aussagen zu treffen, als dass die Verteilung des Kaskadengenerators ähnlich einer log-normal Verteilung sein wird. Mit dem Intermittenzexponenten, der der fundamentalste Skalierungsexponent des Dissipationsfeldes ist, lassen sich die Daten charakterisieren. Die untersuchten Daten teilen sich in zwei Gruppen auf: Die Daten, die aus Luftströmungen gewonnen wurden, weisen einen mit der Reynoldszahl steigenden Intermittenzexponenten auf, der für hohe Reynoldszahlen gegen den konstanten Wert 0.2 konvergiert. Die Daten aus einem Helium-Freistrahl andererseits können am besten mit einem konstanten Intermittenzexponenten 0.1 charakterisiert werden. Diese Unterschiede können nicht vollständig erklärt werden.Um diesen Sachverhalt genauer zu untersuchen wird ein neues Modell vorgeschlagen, das die Kramers-Moyal-Koeffizienten des Geschwindigkeitsfeldes in ein Dissipationsfeld übersetzt, um den Intermittenzexponenten aus einer anderen Perspektive zu berechnen.Schließlich wird eine dynamische Verallgemeinerung des Kaskadenprozesses,die kürzlich vorgestellt wurde, getestet. Das dynamische Modell macht Vorhersagen für allgemeine n-Punktkorrelationen. Die analytischen Ausdrücke für Dreipunktkorrelationen werden mit experimentellen Daten verglichen. Die Übereinstimmung zwischen Modellvorhersage und Experiment ist überzeugend. / Modelling the turbulent energy cascade gives valuable insight into the dynamics of a turbulent flow. In this work, random multiplicative cascade processes are studied and compared with dissipation time series obtained from various experiments. The emphasis of this comparison is laid on the two-point correlation function because the unavoidable surrogacy of the dissipation field, i.e.the substitution of the multi-component expression by a single component of the velocity signal, corrupts the scaling behaviour of other observables such as integral moments. Finite-size expressions for the two-point correlation function are derived, which make it possible to fit data obtained at moderate or low Reynolds numbers and extract accurate values of scaling exponents. A comprehensive data analysis attempts to determine the free parameters of the cascade generator. The statistics are too limited to claim more than that the cascade generator will be close to having a log-normal distribution. The most basic scaling exponent of the dissipation field is called intermittency exponent and can be used to characterise the data. The investigated data fall into two groups. One set of data obtained from measurements with air show an increasing intermittency exponent with an increasing Reynolds number and saturate for high Reynolds numbers to a value of 0.2. The other set, obtained in a helium jet is best characterised with a constant intermittency exponent of 0.1. The differences are not fully understood. To investigate this issue further, a new construction is suggested, that translates the Kramers-Moyal coefficients of the velocity field into a dissipation field in order to calculate the intermittency exponent from different perspective. Finally, a dynamical generalisation of the cascade process, introduced recently, is tested. The dynamical model makes predictions for point correlation functions. The analytical expressions for three-point correlation functions are compared with their counterparts obtained from experimental data and show remarkable agreement.
|
4 |
Universality of Kolmogorov's Cascade Picture in Inverse Energy Cascade Range of Two-dimensional turbulence / 2次元乱流のエネルギー逆カスケード領域における、コルモゴロフのカスケード描像の普遍性についてMizuta, Atsushi 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18446号 / 理博第4006号 / 新制||理||1578(附属図書館) / 31324 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 藤 定義, 教授 佐々 真一, 教授 早川 尚男 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
5 |
An analytical, phenomenological and numerical study of geophysical and magnetohydrodynamic turbulence in two dimensionsBlackbourn, Luke A. K. January 2013 (has links)
In this thesis I study a variety of two-dimensional turbulent systems using a mixed analytical, phenomenological and numerical approach. The systems under consideration are governed by the two-dimensional Navier-Stokes (2DNS), surface quasigeostrophic (SQG), alpha-turbulence and magnetohydrodynamic (MHD) equations. The main analytical focus is on the number of degrees of freedom of a given system, defined as the least value $N$ such that all $n$-dimensional ($n$ ≥ $N$) volume elements along a given trajectory contract during the course of evolution. By equating $N$ with the number of active Fourier-space modes, that is the number of modes in the inertial range, and assuming power-law spectra in the inertial range, the scaling of $N$ with the Reynolds number $Re$ allows bounds to be put on the exponent of the spectrum. This allows the recovery of analytic results that have until now only been derived phenomenologically, such as the $k$[superscript(-5/3)] energy spectrum in the energy inertial range in SQG turbulence. Phenomenologically I study the modal interactions that control the transfer of various conserved quantities. Among other results I show that in MHD dynamo triads (those converting kinetic into magnetic energy) are associated with a direct magnetic energy flux while anti-dynamo triads (those converting magnetic into kinetic energy) are associated with an inverse magnetic energy flux. As both dynamo and anti-dynamo interacting triads are integral parts of the direct energy transfer, the anti-dynamo inverse flux partially neutralises the dynamo direct flux, arguably resulting in relatively weak direct energy transfer and giving rise to dynamo saturation. These theoretical results are backed up by high resolution numerical simulations, out of which have emerged some new results such as the suggestion that for alpha turbulence the generalised enstrophy spectra are not closely approximated by those that have been derived phenomenologically, and new theories may be needed in order to explain them.
|
6 |
Internal wave attractors : from geometrical focusing to non-linear energy cascade and mixing / Attracteurs d’ondes internes : de la focalisation géométrique à la cascade d’énergie non-linéaire et au mélangeBrouzet, Christophe 01 July 2016 (has links)
La cascade d’énergie qui a lieu dans les océans, depuis les grandes vers les petites échelles, est capitale pour comprendre leur dynamique et le mélange irréversible associé. Les attracteurs d’ondes internes font partie des mécanismes conduisant potentiellement à une telle cascade. Dans ce manuscrit, nous étudions expérimentalement les attracteurs d’ondes internes, dans une cuve trapézoïdale remplie d’un fluide stratifié linéairement en densité. Dans cette géométrie, les ondes peuvent être focalisées vers un cycle limite : l’attracteur. Nous montrons que la formation de l’attracteur est purement linéaire : des petites échelles sont donc créées grâce à la focalisation des ondes. Les principales caractéristiques de l’attracteur dépendent uniquement de la géométrie trapézoïdale de la cuve. A l’échelle de l’océan, nous montrons que les attracteurs d’ondes internes sont très probablement instables. En effet, ceux-ci sont sujets à une instabilité de résonance triadique, qui transfère de l’énergie depuis l’attracteur vers un couple d’ondes secondaires. Cette instabilité et ses principales caractéristiques sont décrites en fonction de la géométrie du bassin. Pour des expériences de longue durée, l’instabilité produit plusieurs paires d’ondes secondaires, créant une cascade d’instabilités triadiques et transférant l’énergie injectée à grandes échelles vers des échelles plus petites. Nous montrons, pour la première fois de façon expérimentale, de très fortes signatures de turbulence d’ondes internes. Au delà de cet état, la cascade atteint un régime de mélange partiel du fluide stratifié. Cet ultime régime apparait indépendant de la géométrie trapézoïdale du bassin, et donc, universel. Cette thèse est complétée par une étude sur la masse ajoutée et l’amortissement par émission d’ondes d’objets oscillant horizontalement dans un fluide stratifié en densité. Cela a des applications concernant la conversion de l’énergie des marées en ondes internes. / A question of paramount importance in the dynamics of oceans is related to the energy cascade from large to small scales and its contribution to mixing. Internal wave attractors may be one of the possible mechanisms responsible for such a cascade. In this manuscript, we study experimentally internal wave attractors in a trapezoidal test tank filled with linearly stratified fluid. In such a geometry, the waves can form closed loops called attractors. We show that the attractor formation is purely linear: small scales are thus created by wave focusing. The attractor characteristics are found to only depend on the trapezoidal geometry of the tank. At the ocean scale, we show that attractors are very likely to be unstable. Indeed, internal wave attractors are prone to a triadic resonance instability, which transfers energy from the attractor to a pair of secondary waves. This instability and its main characteristics are described as a function of the geometry of the basin. For long-term experiments, the instability produces several pairs of secondary waves, creating a cascade of triadic interactions and transferring energy from large-scale monochromatic input to multi-scale internal-wave motion. We reveal, for the first time, experimental convincing signatures of internal wave turbulence. Beyond this cascade, we have a mixing regime, which appears to be independent of the trapezoidal geometry and, thus, universal. This manuscript is completed by a study on added mass and wave damping coefficient of bodies oscillating horizontally in a stratified fluid, with applications to tidal conversion.
|
7 |
Data-driven theoretical modelling of the turbulent energy cascadeCleve, Jochen 19 November 2004 (has links)
Durch eine Modellierung der Energiekaskade gewinnt man wertvolle Einsichten in die Dynamik turbulenter Strömungen. In dieser Arbeit werden multiplikative Kaskadenprozesse untersucht und mit verschiedenen experimentellen Zeitreihen der Energiedissipation verglichen. Zur Berechnung der Energiedissipation ist es unvermeidlich auf eine Hilfskonstruktion zurückzugreifen, die die nicht gemessenen Komponenten des Geschwindigkeitsfeldes ersetzt. Der Schwerpunkt des Vergleichs zwischen Modell und Experiment liegt auf Zweipunktkorrelationen, weil andere Observablen, wie z. B. integrale Momente, durch diese Hilfskonstruktion der Dissipation verfälscht werden. Es werden explizite Ausdrücke für die Zweipunktkorrelationen abgeleitet, die auch Korrekturen, die von einem endlichen Skalierungsbereich stammen,berücksichtigen. Mit diesen Ausdrücken ist es möglich, auch Datensätze mit niedrigen oder moderaten Reynoldszahlen zu fitten und genaue Werte für die Skalierungsexponenten zu bestimmen. Mit einer umfassenden Datenanalyse wird versucht, die freien Parameter des Kaskadengenerators zu bestimmen. Die verfügbare Statistik der Daten ist zu gering, um genauere Aussagen zu treffen, als dass die Verteilung des Kaskadengenerators ähnlich einer log-normal Verteilung sein wird. Mit dem Intermittenzexponenten, der der fundamentalste Skalierungsexponent des Dissipationsfeldes ist, lassen sich die Daten charakterisieren. Die untersuchten Daten teilen sich in zwei Gruppen auf: Die Daten, die aus Luftströmungen gewonnen wurden, weisen einen mit der Reynoldszahl steigenden Intermittenzexponenten auf, der für hohe Reynoldszahlen gegen den konstanten Wert 0.2 konvergiert. Die Daten aus einem Helium-Freistrahl andererseits können am besten mit einem konstanten Intermittenzexponenten 0.1 charakterisiert werden. Diese Unterschiede können nicht vollständig erklärt werden.Um diesen Sachverhalt genauer zu untersuchen wird ein neues Modell vorgeschlagen, das die Kramers-Moyal-Koeffizienten des Geschwindigkeitsfeldes in ein Dissipationsfeld übersetzt, um den Intermittenzexponenten aus einer anderen Perspektive zu berechnen.Schließlich wird eine dynamische Verallgemeinerung des Kaskadenprozesses,die kürzlich vorgestellt wurde, getestet. Das dynamische Modell macht Vorhersagen für allgemeine n-Punktkorrelationen. Die analytischen Ausdrücke für Dreipunktkorrelationen werden mit experimentellen Daten verglichen. Die Übereinstimmung zwischen Modellvorhersage und Experiment ist überzeugend. / Modelling the turbulent energy cascade gives valuable insight into the dynamics of a turbulent flow. In this work, random multiplicative cascade processes are studied and compared with dissipation time series obtained from various experiments. The emphasis of this comparison is laid on the two-point correlation function because the unavoidable surrogacy of the dissipation field, i.e.the substitution of the multi-component expression by a single component of the velocity signal, corrupts the scaling behaviour of other observables such as integral moments. Finite-size expressions for the two-point correlation function are derived, which make it possible to fit data obtained at moderate or low Reynolds numbers and extract accurate values of scaling exponents. A comprehensive data analysis attempts to determine the free parameters of the cascade generator. The statistics are too limited to claim more than that the cascade generator will be close to having a log-normal distribution. The most basic scaling exponent of the dissipation field is called intermittency exponent and can be used to characterise the data. The investigated data fall into two groups. One set of data obtained from measurements with air show an increasing intermittency exponent with an increasing Reynolds number and saturate for high Reynolds numbers to a value of 0.2. The other set, obtained in a helium jet is best characterised with a constant intermittency exponent of 0.1. The differences are not fully understood. To investigate this issue further, a new construction is suggested, that translates the Kramers-Moyal coefficients of the velocity field into a dissipation field in order to calculate the intermittency exponent from different perspective. Finally, a dynamical generalisation of the cascade process, introduced recently, is tested. The dynamical model makes predictions for point correlation functions. The analytical expressions for three-point correlation functions are compared with their counterparts obtained from experimental data and show remarkable agreement.
|
8 |
Dynamic properties of two-dimensional and quasi-geostrophic turbulenceVallgren, Andreas January 2010 (has links)
Two codes have been developed and implemented for use on massively parallelsuper computers to simulate two-dimensional and quasi-geostrophic turbulence.The codes have been found to scale well with increasing resolution and width ofthe simulations. This has allowed for the highest resolution simulations of twodimensionaland quasi-geostrophic turbulence so far reported in the literature.The direct numerical simulations have focused on the statistical characteristicsof turbulent cascades of energy and enstrophy, the role of coherent vorticesand departures from universal scaling laws, theoretized more than 40 yearsago. In particular, the investigations have concerned the enstrophy and energycascades in forced and decaying two-dimensional turbulence. Furthermore, theapplicability of Charney’s hypotheses on quasi-geostrophic turbulence has beentested. The results have shed light on the flow evolution at very large Reynoldsnumbers. The most important results are the robustness of the enstrophycascade in forced and decaying two-dimensional turbulence, the sensitivity toan infrared Reynolds number in the spectral scaling of the energy spectrumin the inverse energy cascade range, and the validation of Charney’s predictionson the dynamics of quasi-geostrophic turbulence. It has also been shownthat the scaling of the energy spectrum in the enstrophy cascade is insensitiveto intermittency in higher order statistics, but that corrections apply to the”universal” Batchelor-Kraichnan constant, as a consequence of large-scale dissipationanomalies following a classical remark by Landau (Landau & Lifshitz1987). Another finding is that the inverse energy cascade is maintained bynonlocal triad interactions, which is in contradiction with the classical localityassumption. / QC 20101029
|
9 |
Sur certains systèmes hamiltoniens liés à l’équation de Szegő cubique / On certain Hamiltonian systems related to the cubic Szegő equationXu, Haiyan 14 September 2015 (has links)
Cette thèse est principalement consacrée à l’étude du comportement en temps long de solutions de certaines équations aux dérivées partielles hamiltoniennes, du type i∂_t u=X_H (u), en particulier l’existence globale, la croissance des normes de Sobolev, la diffusion et l’approximation par la dynamique résonante.Dans ce contexte, nous considérons d’abord une perturbation de l’équation de Szegő cubique par un potentiel linéaire, i∂_t u=∏ |u|² u+α∫ u,α∈R, (α-Szegő) où ∏▒ désigne le projecteur de Szegő sur les fréquences positives. Pour α=0, cette équation est l’équation de Szegő cubique, étudiée récemment par Gérard et Grellier comme modèle mathématique d’équation non linéaire et non dispersive. Pour l’équation (α–Szegő), nous établissons le caractère bien posé et la complète intégrabilité, et étudions la dynamique des valeurs singulières des opérateurs de Hankel associés. En outre, nous montrons les propriétés suivantes pour cette équation, sur une classe de sous–variétés invariantes de dimensions finies arbitrairement grandes : si α<0, toute trajectoire est relativement compacte, et toute norme de Sobolev est bornée le long de cette trajectoire. Siα>0, il existe des trajectoires le long desquelles toutes les normes de Sobolev de régularité plus grande que ½ tendent exponentiellement vers l’infini en temps.Dans une seconde partie, nous étudions un système mixte Schrödinger–ondes sur le cylinder (x,y)∈R×T , i∂_t U+∂_xx U-|D_y |U=|U|² U,(WS)En adaptant une idée de Hani–Pausader–Tzvetkov–Visciglia, nous établissons une théorie du scattering modifiée reliant les petites solutions de cette équation et les petites solutions de l’équation de Szegő cubique. En combinant cette théorie du scattering avec un résultat récent de Gérard–Grellier, nous en déduisons l’existence de solutions globales de (WS) qui sont non bornées dans l’espace L_x² H_y^s (R×T) pour tout s>½ . / The main purpose of this Ph.D. thesis is to study the long time behavior of solutionsto some Hamiltonian PDEs, i∂_t u=X_H (u), including global existence, growth of high Sobolev norms, scattering and long time approximation by resonant dynamics.In this context, at first we consider the Szegő equation on the circle S1 perturbed bya linear potential, i∂_t u=∏ |u|² u+α∫ u,α∈R, (α-Szegő) where ∏ is the projector onto the non-negative frequencies. For α=0, it turns out tobe the cubic Szegő equation, which was recently introduced by Gérard and Grellier as amathematical toy model of a non-linear totally non dispersive equation.We study the global well-posedness, the integrability and the dynamics of the singularvalues of the related Hankel operators of the α –Szegő equation. Moreover, we establishthe following properties for this equation on a class of invariant submanifolds, with anarbitrary large dimension. For α<0, any trajectory is relatively compact, and all theSobolev norms are bounded on it. For α>0, there exist trajectories on which everySobolev norm of regularity s>½ , exponentially tends to infinity in time.Second, we study the wave-guide Schrödinger equation posed on the spatial domain(x,y)∈R×T ,i∂_t U+∂_xx U-|D_y |U=|U|² U,(WS)Adapting an idea by Hani–Pausader–Tzvetkov–Visciglia, we establish a modified scattering theory between small solutions to this equation and small solutions to the cubic Szegő equation. Combining this scattering theory with a recent result by Gérard–Grellier, we infer existence of global solutions to (WS) which are unbounded in the space L_x^2 H_y^s (R×T) for every s>½ .
|
Page generated in 0.0606 seconds