• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

hp-Adaptive Discontinuous Galerkin Finite Element In Time For Rotor Dynamics Problem

Gudla, Pradeep Kumar 07 1900 (has links) (PDF)
No description available.
12

Design, Analysis, and Application of Immersed Finite Element Methods

Guo, Ruchi 19 June 2019 (has links)
This dissertation consists of three studies of immersed finite element (IFE) methods for inter- face problems related to partial differential equations (PDEs) with discontinuous coefficients. These three topics together form a continuation of the research in IFE method including the extension to elasticity systems, new breakthroughs to higher degree IFE methods, and its application to inverse problems. First, we extend the current construction and analysis approach of IFE methods in the literature for scalar elliptic equations to elasticity systems in the vector format. In particular, we construct a group of low-degree IFE functions formed by linear, bilinear, and rotated Q1 polynomials to weakly satisfy the jump conditions of elasticity interface problems. Then we analyze the trace inequalities of these IFE functions and the approximation capabilities of the resulted IFE spaces. Based on these preparations, we develop a partially penalized IFE (PPIFE) scheme and prove its optimal convergence rates. Secondly, we discuss the limitations of the current approaches of IFE methods when we try to extend them to higher degree IFE methods. Then we develop a new framework to construct and analyze arbitrary p-th degree IFE methods. In this framework, each IFE function is the extension of a p-th degree polynomial from one subelement to the whole interface element by solving a local Cauchy problem on interface elements in which the jump conditions across the interface are employed as the boundary conditions. All the components in the analysis, including existence of IFE functions, the optimal approximation capabilities and the trace inequalities, are all reduced to key properties of the related discrete extension operator. We employ these results to show the optimal convergence of a discontinuous Galerkin IFE (DGIFE) method. In the last part, we apply the linear IFE methods in the literature together with the shape optimization technique to solve a group of interface inverse problems. In this algorithm, both the governing PDEs and the objective functional for interface inverse problems are discretized optimally by the IFE method regardless of the location of the interface in a chosen mesh. We derive the formulas for the gradients of the objective function in the optimization problem which can be implemented efficiently in the IFE framework through a discrete adjoint method. We demonstrate the properties of the proposed algorithm by applying it to three representative applications. / Doctor of Philosophy / Interface problems arise from many science and engineering applications modeling the transmission of some physical quantities between multiple materials. Mathematically, these multiple materials in general are modeled by partial differential equations (PDEs) with discontinuous parameters, which poses challenges to developing efficient and reliable numerical methods and the related theoretical error analysis. The main contributions of this dissertation is on the development of a special finite element method, the so called immersed finite element (IFE) method, to solve the interface problems on a mesh independent of the interface geometry which can be advantageous especially when the interface is moving. Specifically, this dissertation consists of three projects of IFE methods: elasticity interface problems, higher-order IFE methods and interface inverse problems, including their design, analysis, and application.
13

Un modèle Maxwell-élasto-fragile pour la déformation et dérive de la banquise / A Maxwell-Elasto-Brittle model for the drift and deformation of sea ice

Dansereau, Véronique 17 February 2016 (has links)
De récentes analyses statistiques de données satellitales et de bouées dérivantes ont révélé le caractère hautement hétérogène et intermittent de la déformation de la banquise Arctique, démontrant de ce fait que le schéma rhéologique visco-plastique utilisé traditionnellement en modélisation climatique et opérationnelle ne simule pas adéquatement le comportement dynamique des glaces ainsi que les efforts mécaniques en leur sein.Un cadre rhéologique alternatif, baptisé "Maxwell-Élasto-Fragile" (Maxwell-EB) est donc développé dans le but de reproduire correctement la dérive et la déformation des glaces dans les modèles continus de la banquise à l'échelle régionale et globale. Le modèle se base en partie sur un cade de modélisation élasto-fragile utilisé pour les roches et la glace. Un terme de relaxation visqueuse est ajouté à la relation constitutive d'élasticité linéaire ainsi qu'une viscosité effective, ou "apparente", laquelle évolue en fonction du niveau d'endommagement local du matériel simulé, comme son module d'élasticité. Ce cadre rhéologique permet la dissipation partielle des contraintes internes par le biais de déformations permanentes, possiblement grandes, le long de failles (ou "leads") lorsque le matériel est fortement endommagé ainsi que la conservation de la mémoire des contraintes associées aux déformations élastiques dans les zones où le matériel reste relativement peu endommagé.The schéma numérique du modèle Maxwell-EB est basé sur des méthodes de calcul variationnel et par éléments finis. Une représentation Eulérienne des équations du mouvement est utilisée et des méthodes dites Galerkin discontinues sont implémentées pour le traitement des processus d'advection.Une première série de simulations idéalisées et sans advection est présentée, lesquelles démontrent que la rhéologie Maxwell-Élasto-Fragile reproduit les caractéristiques principales du comportement mécanique de la banquise, c'est-à-dire la localisation spatiale, l'anisotropie et l'intermittence de la déformation ainsi que les lois d'échelle qui en découlent. La représentation adéquate de ces propriétés de la déformation se traduit par la présence de très forts gradients au sein des champs de contrainte, de déformation et du niveau d'endommagement simulés par le modèle. Des tests visant à évaluer la diffusion numérique découlant de l'advection de ces gradients extrêmes ainsi qu'à identifier certaines contraintes numériques du modèle sont ensuite présentés. De premières simulations en grandes déformations, incluant les processus d'advection, sont réalisées, lesquelles permettent une comparaison aux résultats d'une expérience de Couette annulaire sur de la glace fabriquée en laboratoire. Le modèle reproduit en partie le comportement mécanique observé. Par ailleurs, les différences entre les résultats des simulations et ceux obtenus en laboratoire permettent d'identifier certaines limitations, numériques et physiques, du modèle en grandes déformations. Finalement, le modèle rhéologique est utilisé pour modéliser la dérive et la déformation des glaces à l'échelle de la banquise Arctique. Des simulations idéalisées de l'écoulement de glace dans un chenal étroit sont présentées. Le modèle simule une propagation localisée de l'endommagement, définissant des failles en forme d'arche, et la formation de ponts de glace stables. / In recent years, analyses of available ice buoy and satellite data have revealed the strong heterogeneity and intermittency of the deformation of sea ice and have demonstrated that the viscous-plastic rheology widely used in current climate models and operational modelling platforms does not simulate adequately the drift, deformation and mechanical stresses within the ice pack.A new alternative rheological framework named ''Maxwell-Elasto-Brittle” (Maxwell-EB) is therefore developed in the view of reproducing more accurately the drift and deformation of the ice cover in continuum sea ice models at regional to global scales. The model builds on an elasto-brittle framework used for ice and rocks. A viscous-like relaxation term is added to a linear-elastic constitutive relationship together with an effective viscosity that evolves with the local level of damage of the material, like its elastic modulus. This framework allows for part of the internal stress to dissipate in large, permanent deformations along the faults/leads once the material is highly damaged while retaining the memory of small, elastic deformations over undamaged areas. A healing mechanism is also introduced, counterbalancing the effects of damaging over large time scales.The numerical scheme for the Maxwell-EB model is based on finite elements and variational methods. The equations of motion are cast in the Eulerian frame and discontinuous Galerkin methods are implemented to handle advective processes.Idealized simulations without advection are first presented. These demonstrate that the Maxwell-EB rheological framework reproduces the main characteristics of sea ice mechanics and deformation : the strain localization, the anisotropy and intermittency of deformation and the associated scaling laws. The successful representation of these properties translates into very large gradients within all simulated fields. Idealized numerical experiments are conducted to evaluate the amount of numerical diffusion associated with the advection of these extreme gradients in the model and investigate other limitations of the numerical scheme. First large-deformation simulations are carried in the context of a Couette flow experiment, which allow a comparison with the result of a similar laboratory experiment performed on fresh-water ice. The model reproduces part of the mechanical behaviour observed in the laboratory. Comparison of the numerical and experimental results allow identifying some numerical and physical limitations of the model in the context of large-deformation and laboratory-scale simulations. Finally, the Maxwell-EB framework is implemented in the context of modelling the drift and deformation of sea ice on geophysical scales. Idealized simulations of the flow of sea ice through a narrow channel are presented. The model simulates the propagation of damage along arch-like features and successfully reproduces the formation of stable ice bridges.
14

A Posteriori Error Analysis of Discontinuous Galerkin Methods for Elliptic Variational Inequalities

Porwal, Kamana January 2014 (has links) (PDF)
The main emphasis of this thesis is to study a posteriori error analysis of discontinuous Galerkin (DG) methods for the elliptic variational inequalities. The DG methods have become very pop-ular in the last two decades due to its nature of handling complex geometries, allowing irregular meshes with hanging nodes and different degrees of polynomial approximation on different ele-ments. Moreover they are high order accurate and stable methods. Adaptive algorithms refine the mesh locally in the region where the solution exhibits irregular behaviour and a posteriori error estimates are the main ingredients to steer the adaptive mesh refinement. The solution of linear elliptic problem exhibits singularities due to change in boundary con-ditions, irregularity of coefficients and reentrant corners in the domain. Apart from this, the solu-tion of variational inequality exhibits additional irregular behaviour due to occurrence of the free boundary (the part of the domain which is a priori unknown and must be found as a component of the solution). In the lack of full elliptic regularity of the solution, uniform refinement is inefficient and it does not yield optimal convergence rate. But adaptive refinement, which is based on the residuals ( or a posteriori error estimator) of the problem, enhance the efficiency by refining the mesh locally and provides the optimal convergence. In this thesis, we derive a posteriori error estimates of the DG methods for the elliptic variational inequalities of the first kind and the second kind. This thesis contains seven chapters including an introductory chapter and a concluding chap-ter. In the introductory chapter, we review some fundamental preliminary results which will be used in the subsequent analysis. In Chapter 2, a posteriori error estimates for a class of DG meth-ods have been derived for the second order elliptic obstacle problem, which is a prototype for elliptic variational inequalities of the first kind. The analysis of Chapter 2 is carried out for the general obstacle function therefore the error estimator obtained therein involves the min/max func-tion and hence the computation of the error estimator becomes a bit complicated. With a mild assumption on the trace of the obstacle, we have derived a significantly simple and easily com-putable error estimator in Chapter 3. Numerical experiments illustrates that this error estimator indeed behaves better than the error estimator derived in Chapter 2. In Chapter 4, we have carried out a posteriori analysis of DG methods for the Signorini problem which arises from the study of the frictionless contact problems. A nonlinear smoothing map from the DG finite element space to conforming finite element space has been constructed and used extensively, in the analysis of Chapter 2, Chapter 3 and Chapter 4. Also, a common property shared by all DG methods allows us to carry out the analysis in unified setting. In Chapter 5, we study the C0 interior penalty method for the plate frictional contact problem, which is a fourth order variational inequality of the second kind. In this chapter, we have also established the medius analysis along with a posteriori analy-sis. Numerical results have been presented at the end of every chapter to illustrate the theoretical results derived in respective chapters. We discuss the possible extension and future proposal of the work presented in the Chapter 6. In the last chapter, we have documented the FEM codes used in the numerical experiments.

Page generated in 0.0639 seconds